ﻻ يوجد ملخص باللغة العربية
This is the first of two papers concerning saddle-shaped solutions to the semilinear equation $L_K u = f(u)$ in $mathbb{R}^{2m}$, where $L_K$ is a linear elliptic integro-differential operator and $f$ is of Allen-Cahn type. Saddle-shaped solutions are doubly radial, odd with respect to the Simons cone ${(x, x) in mathbb{R}^m times mathbb{R}^m , : , |x| = |x|}$, and vanish only on this set. By the odd symmetry, $L_K$ coincides with a new operator $L_K^{mathcal{O}}$ which acts on functions defined only on one side of the Simons cone, ${|x|>|x|}$, and that vanish on it. This operator $L_K^{mathcal{O}}$, which corresponds to reflect a function oddly and then apply $L_K$, has a kernel on ${|x|>|x|}$ which is different from $K$. In this first paper, we characterize the kernels $K$ for which the new kernel is positive and therefore one can develop a theory on the saddle-shaped solution. The necessary and sufficient condition for this turns out to be that $K$ is radially symmetric and $taumapsto K(sqrt tau)$ is a strictly convex function. Assuming this, we prove an energy estimate for doubly radial odd minimizers and the existence of saddle-shaped solution. In a subsequent article, part II, further qualitative properties of saddle-shaped solutions will be established, such as their asymptotic behavior, a maximum principle for the linearized operator, and their uniqueness.
This paper addresses saddle-shaped solutions to the semilinear equation $L_K u = f(u)$ in $mathbb{R}^{2m}$, where $L_K$ is a linear elliptic integro-differential operator with a radially symmetric kernel $K$, and $f$ is of Allen-Cahn type. Saddle-sha
We study acceleration phenomena in monostable integro-differential equations with ignition nonlinearity. Our results cover fractional Laplace operators and standard convolutions in a unified way, which is also a contribution of this paper. To achieve
Generalized summability results are obtained regarding formal solutions of certain families of linear moment integro-differential equations with time variable coefficients. The main result leans on the knowledge of the behavior of the moment derivati
We present and analyse a novel manifestation of the revival phenomenon for linear spatially periodic evolution equations, in the concrete case of three nonlocal equations that arise in water wave theory and are defined by convolution kernels. Revival
In this paper we prove the following long-standing conjecture: stable solutions to semilinear elliptic equations are bounded (and thus smooth) in dimension $n leq 9$. This result, that was only known to be true for $nleq4$, is optimal: $log(1/|x|^2