ترغب بنشر مسار تعليمي؟ اضغط هنا

Light effective hole mass in undoped Ge/SiGe quantum wells

94   0   0.0 ( 0 )
 نشر من قبل Giordano Scappucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities ($2.0-11times10^{11}$ cm$^{-2}$) in top-gated field effect transistors by positioning the strained buried Ge channel at different depths of 12 and 44 nm from the surface. From the thermal damping of the amplitude of Shubnikov-de Haas oscillations, we measure a light mass of $0.061m_e$ at a density of $2.2times10^{11}$ cm$^{-2}$. We confirm the theoretically predicted dependence of increasing mass with density and by extrapolation we find an effective mass of $sim0.05m_e$ at zero density, the lightest effective mass for a planar platform that demonstrated spin qubits in quantum dots.

قيم البحث

اقرأ أيضاً

: n-type Ge/SiGe asymmetric-coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spec troscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through the comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune by design the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are the promising starting point towards a working electrically pumped light-emitting device.
Near surface indium arsenide quantum wells have recently attracted a great deal of interest since they can be interfaced epitaxially with superconducting films and have proven to be a robust platform for exploring mesoscopic and topological supercond uctivity. In this work, we present magnetotransport properties of two-dimensional electron gases confined to an indium arsenide quantum well near the surface. The electron mass extracted from the envelope of the Shubnikov-de Haas oscillations shows an average effective mass $m^{*}$ = 0.04 at low magnetic field. Complementary to our magnetotransport study, we employed cyclotron resonance measurements and extracted the electron effective mass in the ultra high magnetic field regime. Our measurements show that the effective mass depends on magnetic field in this regime. The data can be understood by considering a model that includes non-parabolicity of the indium arsenide conduction bands.
Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099$m_ 0 $ to 0.112$m_0 $ with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant $alpha $=0.32.
84 - X. Mi , T. M. Hazard , C. Payette 2015
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analy zing data from 26 wafers with different heterostructure growth profiles we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000 cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator transition at a critical density 0.46 x 10^11/cm^2. We extract a valley splitting of approximately 150 microeV at a magnetic field of 1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.
Recently, lithographic quantum dots in strained-Ge/SiGe have become a promising candidate for quantum computation, with a remarkably quick progression from demonstration of a quantum dot to qubit logic demonstrations. Here we present a measurement of the out-of-plane $g$-factor for single-hole quantum dots in this material. As this is a single-hole measurement, this is the first experimental result that avoids the strong orbital effects present in the out-of-plane configuration. In addition to verifying the expected $g$-factor anisotropy between in-plane and out-of-plane magnetic ($B$)-fields, variations in the $g$-factor dependent on the occupation of the quantum dot are observed. These results are in good agreement with calculations of the $g$-factor using the heavy- and light-hole spaces of the Luttinger Hamiltonian, especially the first two holes, showing a strong spin-orbit coupling and suggesting dramatic $g$-factor tunability through both the $B$-field and the charge state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا