ﻻ يوجد ملخص باللغة العربية
Near surface indium arsenide quantum wells have recently attracted a great deal of interest since they can be interfaced epitaxially with superconducting films and have proven to be a robust platform for exploring mesoscopic and topological superconductivity. In this work, we present magnetotransport properties of two-dimensional electron gases confined to an indium arsenide quantum well near the surface. The electron mass extracted from the envelope of the Shubnikov-de Haas oscillations shows an average effective mass $m^{*}$ = 0.04 at low magnetic field. Complementary to our magnetotransport study, we employed cyclotron resonance measurements and extracted the electron effective mass in the ultra high magnetic field regime. Our measurements show that the effective mass depends on magnetic field in this regime. The data can be understood by considering a model that includes non-parabolicity of the indium arsenide conduction bands.
We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities ($2.0-11times10^{11}$ cm$^{-2}$) in top-gated field effect transistors by positioning the strained buried
The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr doped (Bi,Sb)$_2$Te$_3$ at a low temperature ($sim$ 30mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional dilut
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and c
Near-surface InAs two-dimensional electron gas (2DEG) systems have great potential for realizing networks of multiple Majorana zero modes towards a scalable topological quantum computer. Improving mobility in the near-surface 2DEGs is beneficial for
Quantum wells constitute one of the most important classes of devices in the study of 2D systems. In a double layer QW, the additional which-layer degree of freedom gives rise to celebrated phenomena such as Coulomb drag, Hall drag and exciton conden