ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures

84   0   0.0 ( 0 )
 نشر من قبل Jason Petta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analyzing data from 26 wafers with different heterostructure growth profiles we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000 cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator transition at a critical density 0.46 x 10^11/cm^2. We extract a valley splitting of approximately 150 microeV at a magnetic field of 1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.

قيم البحث

اقرأ أيضاً

We report on a quantum dot device design that combines the low disorder properties of undoped SiGe heterostructure materials with an overlapping gate stack in which each electrostatic gate has a dominant and unique function -- control of individual q uantum dot occupancies and of lateral tunneling into and between dots. Control of the tunneling rate between a dot and an electron bath is demonstrated over more than nine orders of magnitude and independently confirmed by direct measurement within the bandwidth of our amplifiers. The inter-dot tunnel coupling at the (0,2)<-->(1,1) charge configuration anti-crossing is directly measured to quantify the control of a single inter-dot tunnel barrier gate. A simple exponential dependence is sufficient to describe each of these tunneling processes as a function of the controlling gate voltage.
We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities ($2.0-11times10^{11}$ cm$^{-2}$) in top-gated field effect transistors by positioning the strained buried Ge channel at different depths of 12 and 44 nm from the surface. From the thermal damping of the amplitude of Shubnikov-de Haas oscillations, we measure a light mass of $0.061m_e$ at a density of $2.2times10^{11}$ cm$^{-2}$. We confirm the theoretically predicted dependence of increasing mass with density and by extrapolation we find an effective mass of $sim0.05m_e$ at zero density, the lightest effective mass for a planar platform that demonstrated spin qubits in quantum dots.
We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m^2/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al_2O_3, as an insulat or, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.
The temperature dependent Hall mobility data from La-doped SrTiO3 thin films has been analyzed and modeled considering various electron scattering mechanisms. We find that a ~6 meV transverse optical phonon (TO) deformation potential scattering mecha nism is necessary to explain the dependence of transport on temperature between 10-200 K. Also, we find that the low temperature electron mobility in intrinsic (nominally undoped) SrTiO3 is limited by acoustic phonon scattering. Adding the above two scattering mechanisms to longitudinal optical phonon (LO) and ionized impurity scattering mechanisms, excellent quantitative agreement between mobility measurement and model is achieved in the whole temperature range (2-300K) and carrier concentrations ranging over a few orders of magnitude (8x1017 cm-3 - 2x1020 cm-3).
We examine energy spectra of Si quantum dots embedded into Si_{0.75}Ge_{0.25} buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley spli tting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses <6 nm valley splitting is found to be >150 ueV. Using the unique advantage of atomistic calculations we analyze the effect of buffer disorder on valley splitting. Disorder in the buffer leads to the suppression of valley splitting by a factor of 2.5, the splitting fluctuates with ~20 ueV for different disorder realizations. Through these simulations we can guide future experiments into regions of low device-to-device fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا