ﻻ يوجد ملخص باللغة العربية
We investigate the existence of ground state solutions of a Gross-Pitaevskii equation modeling the dynamics of pumped Bose Einstein condensates (BEC). The main interest in such BEC comes from its important nature as macroscopic quantum system, constituting an excellent alternative to the classical condensates which are hard to realize because of the very low temperature required. Nevertheless, the Gross Pitaevskii equation governing the new condensates presents some mathematical challenges due to the presence of the pumping and damping terms. Following a self-contained approach, we prove the existence of ground state solutions of this equation under suitable assumptions: This is equivalent to say that condensation occurs in these situations. We also solve the Cauchy problem of the nonlinear Schroedinger equation and prove some corresponding laws.
We study the time-evolution of initially trapped Bose-Einstein condensates in the Gross-Pitaevskii regime. Under a physically motivated assumption on the energy of the initial data, we show that condensation is preserved by the many-body evolution an
We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergenc
We prove existence and qualitative properties of ground state solutions to a generalized nonlocal 3rd-4th order Gross-Pitaevskii equation. Using a mountain pass argument on spheres and constructing appropriately localized Palais-Smale sequences we ar
We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life
We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot