ترغب بنشر مسار تعليمي؟ اضغط هنا

Gross-Pitaevskii Dynamics for Bose-Einstein Condensates

92   0   0.0 ( 0 )
 نشر من قبل Christian Brennecke
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the time-evolution of initially trapped Bose-Einstein condensates in the Gross-Pitaevskii regime. Under a physically motivated assumption on the energy of the initial data, we show that condensation is preserved by the many-body evolution and that the dynamics of the condensate wave function can be described by the time-dependent Gross-Pitaevskii equation. With respect to previous works, we provide optimal bounds on the rate of condensation (i.e. on the number of excitations of the Bose-Einstein condensate). To reach this goal, we combine the method of cite{LNS}, where fluctuations around the Hartree dynamics for $N$-particle initial data in the mean-field regime have been analyzed, with ideas from cite{BDS}, where the evolution of Fock-space initial data in the Gross-Pitaevskii regime has been considered.



قيم البحث

اقرأ أيضاً

We consider N bosons in a box with volume one, interacting through a two-body potential with scattering length of the order $N^{-1+kappa}$, for $kappa>0$. Assuming that $kappain (0;1/43)$, we show that low-energy states of the system exhibit complete Bose-Einstein condensation by providing explicit bounds on the expectation and on higher moments of the number of excitations.
We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot . After analysing its excitation energy, we study its dynamics relating the topological parameter to its translational velocity and characteristic size. We also investigate the breaking mechanisms of non shape-preserving torus knots confirming an evidence of universal decaying behaviour previously observed.
151 - Remi Carles 2008
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimen sion-reduction for this nonlinear and nonlocal Schrodinger equation.
We investigate the existence of ground state solutions of a Gross-Pitaevskii equation modeling the dynamics of pumped Bose Einstein condensates (BEC). The main interest in such BEC comes from its important nature as macroscopic quantum system, consti tuting an excellent alternative to the classical condensates which are hard to realize because of the very low temperature required. Nevertheless, the Gross Pitaevskii equation governing the new condensates presents some mathematical challenges due to the presence of the pumping and damping terms. Following a self-contained approach, we prove the existence of ground state solutions of this equation under suitable assumptions: This is equivalent to say that condensation occurs in these situations. We also solve the Cauchy problem of the nonlinear Schroedinger equation and prove some corresponding laws.
We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random potential with a high density of scatterers. The character of the wave function of the condensate, however, depends in an essential way on the interplay between randomness and the strength of the two-body interaction. For low density of scatterers or strong interactions the wave function extends over the whole interval. High density of scatterers and weak interaction, on the other hand, leads to localization of the wave function in a fragmented subset of the interval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا