ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state of the time-independent Gross-Pitaevskii equation

198   0   0.0 ( 0 )
 نشر من قبل Claude Dion
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid.



قيم البحث

اقرأ أيضاً

We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross-Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions, optimized for use with GNU and Intel compilers. We use t he split-step Crank-Nicolson algorithm for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful comments for the users. All input parameters are listed at the beginning of each program. Different output files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc. We also present speedup test results for n
We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approa ch involves the derivation of a simplified quantum kinetic theory, in which all processes are treated locally. It is shown that this kinetic theory can then be transformed into a number of phase-space representations, of which the Wigner function description, although approximate, is shown to be the most advantageous. In this description, the quantum kinetic master equation takes the form of a GPE with noise and damping added according to a well-defined prescription--an equation we call the stochastic GPE. From this, a very simplified description we call the phenomenological growth equation can be derived. We use this equation to study i) the nucleation and growth of vortex lattices, and ii) nonlinear losses in a hydrogen condensate, which it is shown can lead to a curious instability phenomenon.
We prove existence and qualitative properties of ground state solutions to a generalized nonlocal 3rd-4th order Gross-Pitaevskii equation. Using a mountain pass argument on spheres and constructing appropriately localized Palais-Smale sequences we ar e able to prove existence of real positive ground states as saddle points. The analysis is deployed in the set of possible states, thus overcoming the problem that the energy is unbounded below. We also prove a corresponding nonlocal Pohozaev identity with no rest term, a crucial part of the analysis.
We investigate the existence of ground state solutions of a Gross-Pitaevskii equation modeling the dynamics of pumped Bose Einstein condensates (BEC). The main interest in such BEC comes from its important nature as macroscopic quantum system, consti tuting an excellent alternative to the classical condensates which are hard to realize because of the very low temperature required. Nevertheless, the Gross Pitaevskii equation governing the new condensates presents some mathematical challenges due to the presence of the pumping and damping terms. Following a self-contained approach, we prove the existence of ground state solutions of this equation under suitable assumptions: This is equivalent to say that condensation occurs in these situations. We also solve the Cauchy problem of the nonlinear Schroedinger equation and prove some corresponding laws.
We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is based on a quasi-classical Wigner function representation of a high temperature master equation for a Bose gas, which includes only modes below an energy cutoff E_R that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provide noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation, and by the feasibility of its numerical implementation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا