ﻻ يوجد ملخص باللغة العربية
We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life-time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.
We explore the exciton-polariton condensation in the two degenerate orbital states. In the honeycomb lattice potential, at the third band we have two degenerate vortex-antivortex lattice states at the inequivalent K and K-points. We have observed ene
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e
We investigate an optically trapped exciton-polariton condensate and observe temporal coherence beyond 1~ns duration. Due to the reduction of the spatial overlap with the thermal reservoir of excitons, the coherence time of the trapped condensate is
We report the experimental study of a hybrid quantum solid state system comprising two-level artificial atoms coupled to cavity confined optical and vibrational modes. In this system combining cavity quantum electrodynamics and cavity optomechanics,
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a sup