ترغب بنشر مسار تعليمي؟ اضغط هنا

FPGA-based Binocular Image Feature Extraction and Matching System

72   0   0.0 ( 0 )
 نشر من قبل Peng Gao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image feature extraction and matching is a fundamental but computation intensive task in machine vision. This paper proposes a novel FPGA-based embedded system to accelerate feature extraction and matching. It implements SURF feature point detection and BRIEF feature descriptor construction and matching. For binocular stereo vision, feature matching includes both tracking matching and stereo matching, which simultaneously provide feature point correspondences and parallax information. Our system is evaluated on a ZYNQ XC7Z045 FPGA. The result demonstrates that it can process binocular video data at a high frame rate (640$times$480 @ 162fps). Moreover, an extensive test proves our system has robustness for image compression, blurring and illumination.

قيم البحث

اقرأ أيضاً

Estimating dense correspondences between images is a long-standing image under-standing task. Recent works introduce convolutional neural networks (CNNs) to extract high-level feature maps and find correspondences through feature matching. However,hi gh-level feature maps are in low spatial resolution and therefore insufficient to provide accurate and fine-grained features to distinguish intra-class variations for correspondence matching. To address this problem, we generate robust features by dynamically selecting features at different scales. To resolve two critical issues in feature selection,i.e.,how many and which scales of features to be selected, we frame the feature selection process as a sequential Markov decision-making process (MDP) and introduce an optimal selection strategy using reinforcement learning (RL). We define an RL environment for image matching in which each individual action either requires new features or terminates the selection episode by referring a matching score. Deep neural networks are incorporated into our method and trained for decision making. Experimental results show that our method achieves comparable/superior performance with state-of-the-art methods on three benchmarks, demonstrating the effectiveness of our feature selection strategy.
Single computation engines have become a popular design choice for FPGA-based convolutional neural networks (CNNs) enabling the deployment of diverse models without fabric reconfiguration. This flexibility, however, often comes with significantly red uced performance on memory-bound layers and resource underutilisation due to suboptimal mapping of certain layers on the engines fixed configuration. In this work, we investigate the implications in terms of CNN engine design for a class of models that introduce a pre-convolution stage to decompress the weights at run time. We refer to these approaches as on-the-fly. To minimise the negative impact of limited bandwidth on memory-bound layers, we present a novel hardware component that enables the on-chip on-the-fly generation of weights. We further introduce an input selective processing element (PE) design that balances the load between PEs on suboptimally mapped layers. Finally, we present unzipFPGA, a framework to train on-the-fly models and traverse the design space to select the highest performing CNN engine configuration. Quantitative evaluation shows that unzipFPGA yields an average speedup of 2.14x and 71% over optimised status-quo and pruned CNN engines under constrained bandwidth and up to 3.69x higher performance density over the state-of-the-art FPGA-based CNN accelerators.
699 - Fanbo Sun , Zhixiang Gu , Bo Feng 2019
Yelp has been one of the most popular local service search engine in US since 2004. It is powered by crowd-sourced text reviews and photo reviews. Restaurant customers and business owners upload photo images to Yelp, including reviewing or advertisin g either food, drinks, or inside and outside decorations. It is obviously not so effective that labels for food photos rely on human editors, which is an issue should be addressed by innovative machine learning approaches. In this paper, we present a simple but effective approach which can identify up to ten kinds of food via raw photos from the challenge dataset. We use 1) image pre-processing techniques, including filtering and image augmentation, 2) feature extraction via convolutional neural networks (CNN), and 3) three ways of classification algorithms. Then, we illustrate the classification accuracy by tuning parameters for augmentations, CNN, and classification. Our experimental results show this simple but effective approach to identify up to 10 food types from images.
Polarimetric synthetic aperture radar (PolSAR) image classification has been investigated vigorously in various remote sensing applications. However, it is still a challenging task nowadays. One significant barrier lies in the speckle effect embedded in the PolSAR imaging process, which greatly degrades the quality of the images and further complicates the classification. To this end, we present a novel PolSAR image classification method, which removes speckle noise via low-rank (LR) feature extraction and enforces smoothness priors via Markov random field (MRF). Specifically, we employ the mixture of Gaussian-based robust LR matrix factorization to simultaneously extract discriminative features and remove complex noises. Then, a classification map is obtained by applying convolutional neural network with data augmentation on the extracted features, where local consistency is implicitly involved, and the insufficient label issue is alleviated. Finally, we refine the classification map by MRF to enforce contextual smoothness. We conduct experiments on two benchmark PolSAR datasets. Experimental results indicate that the proposed method achieves promising classification performance and preferable spatial consistency.
The World Health Organization has listed the design of safer intersections as a key intervention to reduce global road trauma. This article presents the first study to systematically analyze the design of all intersections in a large country, based o n aerial imagery and deep learning. Approximately 900,000 satellite images were downloaded for all intersections in Australia and customized computer vision techniques emphasized the road infrastructure. A deep autoencoder extracted high-level features, including the intersections type, size, shape, lane markings, and complexity, which were used to cluster similar designs. An Australian telematics data set linked infrastructure design to driving behaviors captured during 66 million kilometers of driving. This showed more frequent hard acceleration events (per vehicle) at four- than three-way intersections, relatively low hard deceleration frequencies at T-intersections, and consistently low average speeds on roundabouts. Overall, domain-specific feature extraction enabled the identification of infrastructure improvements that could result in safer driving behaviors, potentially reducing road trauma.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا