ﻻ يوجد ملخص باللغة العربية
Single computation engines have become a popular design choice for FPGA-based convolutional neural networks (CNNs) enabling the deployment of diverse models without fabric reconfiguration. This flexibility, however, often comes with significantly reduced performance on memory-bound layers and resource underutilisation due to suboptimal mapping of certain layers on the engines fixed configuration. In this work, we investigate the implications in terms of CNN engine design for a class of models that introduce a pre-convolution stage to decompress the weights at run time. We refer to these approaches as on-the-fly. To minimise the negative impact of limited bandwidth on memory-bound layers, we present a novel hardware component that enables the on-chip on-the-fly generation of weights. We further introduce an input selective processing element (PE) design that balances the load between PEs on suboptimally mapped layers. Finally, we present unzipFPGA, a framework to train on-the-fly models and traverse the design space to select the highest performing CNN engine configuration. Quantitative evaluation shows that unzipFPGA yields an average speedup of 2.14x and 71% over optimised status-quo and pruned CNN engines under constrained bandwidth and up to 3.69x higher performance density over the state-of-the-art FPGA-based CNN accelerators.
Deep Neural Networks (DNNs) have revolutionized numerous applications, but the demand for ever more performance remains unabated. Scaling DNN computations to larger clusters is generally done by distributing tasks in batch mode using methods such as
Image feature extraction and matching is a fundamental but computation intensive task in machine vision. This paper proposes a novel FPGA-based embedded system to accelerate feature extraction and matching. It implements SURF feature point detection
Modern deep Convolutional Neural Networks (CNNs) are computationally demanding, yet real applications often require high throughput and low latency. To help tackle these problems, we propose Tomato, a framework designed to automate the process of gen
We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. Th
The increasing application of deep learning technology drives the need for an efficient parallel computing architecture for Convolutional Neural Networks (CNNs). A significant challenge faced when designing a many-core CNN accelerator is to handle th