ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical dynamics, arrow of time, and genesis of the Heisenberg commutation relations

66   0   0.0 ( 0 )
 نشر من قبل Detlev Buchholz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the assumption that time evolves only in one direction and mechanical systems can be described by Lagrangeans, a dynamical C*-algebra is presented for non-relativistic particles at atomic scales. Without presupposing any quantization scheme, this algebra is inherently non-commutative and comprises a large set of dynamics. In contrast to other approaches, the generating elements of the algebra are not interpreted as observables, but as operations on the underlying system; they describe the impact of temporary perturbations caused by the surroundings. In accordance with the doctrine of Nils Bohr, the operations carry individual names of classical significance. Without stipulating from the outset their `quantization, their concrete implementation in the quantum world emerges from the inherent structure of the algebra. In particular, the Heisenberg commutation relations for position and velocity measurements are derived from it. Interacting systems can be described within the algebraic setting by a rigorous version of the interaction picture. It is shown that Hilbert space representations of the algebra lead to the conventional formalism of quantum mechanics, where operations on states are described by time-ordered exponentials of interaction potentials. It is also discussed how the familiar statistical interpretation of quantum mechanics can be recovered from operations.



قيم البحث

اقرأ أيضاً

The paper recalls and point to the origin of the transformation laws of the components of classical and quantum fields. They are considered from the standard and fibre bundle point of view. The results are applied to the derivation of the Heisenberg relations in quite general setting, in particular, in the fibre bundle approach. All conclusions are illustrated in a case of transformations induced by the Poincare group.
Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can explain why the thermodynamic arrow of time is universal, i.e ., why the arrow points in the same direction everywhere. Namely, if two subsystems have opposite arrow-directions at a particular time, the interaction between them makes the configuration statistically unstable and causes a decay towards a system with a universal direction of the arrow of time. We present general qualitative arguments for that claim and support them by a detailed analysis of a toy model based on the bakers map.
We use the analytical solution of the quantum Rabi model to obtain absolutely convergent series expressions of the exact eigenstates and their scalar products with Fock states. This enables us to calculate the numerically exact time evolution of <sig ma_x(t)> and <sigma_z(t)> for all regimes of the coupling strength, without truncation of the Hilbert space. We find a qualitatively different behavior of both observables which can be related to their representations in the invariant parity subspaces.
75 - Xiao Dong , Ling Zhou 2017
Why time is a one-way corridor? Whats the origin of the arrow of time? We attribute the thermodynamic arrow of time as the direction of increasing quantum state complexity. Inspired by the work of Nielsen, Susskind and Micadei, we checked this hypoth esis on both a simple two qubit and a three qubit quantum system. The result shows that in the two qubit system, the thermodynamic arrow of time always points in the direction of increasing quantum state complexity. For the three qubit system, the heat flow pattern among subsystems is closely correlated with the quantum state complexity of the subsystems. We propose that besides its impact on macroscopic spatial geometry, quantum state complexity might also generate the thermodynamic arrow of time.
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci ng the relative entropy with the Hoeffding distance. Similarly, our upper bound is in terms of a quantity obtained by replacing the relative entropy with the recently introduced max-relative entropy in the definition of the divergence radius of a channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا