ﻻ يوجد ملخص باللغة العربية
The paper recalls and point to the origin of the transformation laws of the components of classical and quantum fields. They are considered from the standard and fibre bundle point of view. The results are applied to the derivation of the Heisenberg relations in quite general setting, in particular, in the fibre bundle approach. All conclusions are illustrated in a case of transformations induced by the Poincare group.
Higgs fields are attributes of classical gauge theory on a principal bundle $Pto X$ whose structure Lie group $G$ if is reducible to a closed subgroup $H$. They are represented by sections of the quotient bundle $P/Hto X$. A problem lies in descripti
We consider classical gauge theory on a principal bundle P->X in a case of spontaneous symmetry breaking characterized by the reduction of a structure group G of P->X to its closed subgroup H. This reduction is ensured by the existence of global sect
We consider classical gauge theory with spontaneous symmetry breaking on a principal bundle $Pto X$ whose structure group $G$ is reducible to a closed subgroup $H$, and sections of the quotient bundle $P/Hto X$ are treated as classical Higgs fields.
In complete analogy with the classical situation (which is briefly reviewed) it is possible to define bi-Hamiltonian descriptions for Quantum systems. We also analyze compatible Hermitian structures in full analogy with compatible Poisson structures.
Based on the assumption that time evolves only in one direction and mechanical systems can be described by Lagrangeans, a dynamical C*-algebra is presented for non-relativistic particles at atomic scales. Without presupposing any quantization scheme,