ﻻ يوجد ملخص باللغة العربية
Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can explain why the thermodynamic arrow of time is universal, i.e., why the arrow points in the same direction everywhere. Namely, if two subsystems have opposite arrow-directions at a particular time, the interaction between them makes the configuration statistically unstable and causes a decay towards a system with a universal direction of the arrow of time. We present general qualitative arguments for that claim and support them by a detailed analysis of a toy model based on the bakers map.
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical de
The existence of a non-thermodynamic arrow of time was demonstrated in a recent paper (Mod.Phys.Lett. A13, 1265 (1998)), in which a model of non-local Quantum Electrodynamics was formulated through the principle of gauge invariance. In this paper we
We introduce the special issue on the Statistical Mechanics of Climate published on the Journal of Statistical Physics by presenting an informal discussion of some theoretical aspects of climate dynamics that make it a topic of great interest for mat
In this article, we discard the bra-ket notation and its correlative definitions, given by Paul Dirac. The quantum states are only described by the wave functions. The fundamental concepts and definitions in quantum mechanics is simplified. The opera
Based on the assumption that time evolves only in one direction and mechanical systems can be described by Lagrangeans, a dynamical C*-algebra is presented for non-relativistic particles at atomic scales. Without presupposing any quantization scheme,