ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering-Based Collaborative Filtering Using an Incentivized/Penalized User Model

109   0   0.0 ( 0 )
 نشر من قبل Won-Yong Shin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Giving or recommending appropriate content based on the quality of experience is the most important and challenging issue in recommender systems. As collaborative filtering (CF) is one of the most prominent and popular techniques used for recommender systems, we propose a new clustering-based CF (CBCF) method using an incentivized/penalized user (IPU) model only with ratings given by users, which is thus easy to implement. We aim to design such a simple clustering-based approach with no further prior information while improving the recommendation accuracy. To be precise, the purpose of CBCF with the IPU model is to improve recommendation performance such as precision, recall, and $F_1$ score by carefully exploiting different preferences among users. Specifically, we formulate a constrained optimization problem, in which we aim to maximize the recall (or equivalently $F_1$ score) for a given precision. To this end, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient. Afterwards, we give each item an incentive/penalty according to the preference tendency by users within the same cluster. Our experimental results show a significant performance improvement over the baseline CF scheme without clustering in terms of recall or $F_1$ score for a given precision.



قيم البحث

اقرأ أيضاً

Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that graph-based methods are confronted with. Recent works try to solve this problem by utilizing the side information. In this paper, we introduce easily accessible textual information to alleviate the negative effects of data sparsity. Specifically, to incorporate with rich textual knowledge, we utilize a pre-trained context-awareness natural language processing model to initialize the embeddings of text nodes. By a GCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can finally be enriched by the textual knowledge. The matching function used by most graph-based representation learning methods is the inner product, this linear operation can not fit complex semantics well. We design a predictive network, which can combine the graph-based representation learning with the matching function learning, and demonstrate that this predictive architecture can gain significant improvements. Extensive experiments are conducted on three public datasets and the results verify the superior performance of our method over several baselines.
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gen der bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.
Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. textit{e mbedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that its insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.
A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers recommendation. Since the similarities from small-degree users to large-degree users would be larger t han the ones opposite direction, the large-degree users selections are recommended extensively by the traditional second-order CF algorithms. By considering the users similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random-walks proposed in the Ref.7, the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.
In recent years, text-aware collaborative filtering methods have been proposed to address essential challenges in recommendations such as data sparsity, cold start problem, and long-tail distribution. However, many of these text-oriented methods rely heavily on the availability of text information for every user and item, which obviously does not hold in real-world scenarios. Furthermore, specially designed network structures for text processing are highly inefficient for on-line serving and are hard to integrate into current systems. In this paper, we propose a flexible neural recommendation framework, named Review Regularized Recommendation, short as R3. It consists of a neural collaborative filtering part that focuses on prediction output, and a text processing part that serves as a regularizer. This modular design incorporates text information as richer data sources in the training phase while being highly friendly for on-line serving as it needs no on-the-fly text processing in serving time. Our preliminary results show that by using a simple text processing approach, it could achieve better prediction performance than state-of-the-art text-aware methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا