ترغب بنشر مسار تعليمي؟ اضغط هنا

New technique to measure the cavity defects of Fabry-Perot interferometers

236   0   0.0 ( 0 )
 نشر من قبل Gianna Cauzzi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged): We define and test a new technique to accurately measure the cavity defects of air-spaced FPIs, including distortions due to the spectral tuning process typical of astronomical observations. We further develop a correction technique to maintain the shape of the cavity as constant as possible during the spectral scan. These are necessary steps to optimize the spectral transmission profile of a two-dimensional spectrograph using one or more FPIs. We devise a generalization of the techniques developed for the so-called phase-shifting interferometry to the case of FPIs. The technique is applicable to any FPI that can be tuned via changing the cavity spacing ($z$-axis), and can be used for any etalon regardless of the coating reflectivity. The major strength of our method is the ability to fully characterize the cavity during a spectral scan, allowing for the determination of scan-dependent modifications of the plates. As a test, we have applied this technique to three 50 mm diameter interferometers, with cavity gaps ranging between 600 micron and 3 mm, coated for use in the visible range. We obtain accurate and reliable measures of the cavity defects of air-spaced FPIs, and of their evolution during the entire spectral scan. Our main, and unexpected, result is that the relative tilt between the two FPI plates varies significantly during the spectral scan, and can dominate the cavity defects; in particular, we observe that the tilt component at the extremes of the scan is sensibly larger than at the center of the scan. Exploiting the capability of the electronic controllers to set the reference plane at any given spectral step, we develop a correction technique that allows the minimization of the tilt during a complete spectral scan. The correction remains highly stable over long periods, well beyond the typical duration of astronomical observations.



قيم البحث

اقرأ أيضاً

We describe techniques concerning wavelength calibration and sky subtraction to maximise the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integra ted Spectroscopy instrument (OSIRIS) on the 10.4~m Gran Telescopio Canarias telescope, our discussion is generalisable to data from other tunable filter instruments. A key aspect of our methodology is a coordinate transformation to polar coordinates, which simplifies matters when the tunable filter data is circularly symmetric around the optical centre. First, we present a method for rectifying inaccuracies in the wavelength calibration using OH sky emission rings. Using this technique, we improve the absolute wavelength calibration from an accuracy of 5 Angstroms to 1 Angstrom, equivalent to ~7% of our instrumental resolution, for 95% of our data. Then, we discuss a new way to estimate the background sky emission by median filtering in polar coordinates. This method suppresses contributions to the sky background from the outer envelopes of distant galaxies, maximising the fluxes of sources measured in the corresponding sky-subtracted images. We demonstrate for data tuned to a central wavelength of 7615~$rmAA$ that galaxy fluxes in the new sky-subtracted image are ~37% higher, versus a sky-subtracted image from existing methods for OSIRIS tunable filter data.
97 - L.G. Herrmann 2007
We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. T he quantum shot noise theory accounts for the data quantitatively. It allows to confirm the existence of two nearly degenerate orbitals. At resonance, the transmission of the nanotube approaches unity, and the nanotube becomes noiseless, as observed in quantum point contacts. In this weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence.
Quantum interferometers are powerful tools for probing the wave-nature and exchange statistics of indistinguishable particles. Of particular interest are interferometers formed by the chiral, one-dimensional (1D) edge channels of the quantum Hall eff ect (QHE) that guide electrons without dissipation. Using quantum point contacts (QPCs) as beamsplitters, these 1D channels can be split and recombined, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can be used for studying exchange statistics of anyonic quasiparticles. In this study we develop a robust QHI fabrication technique in van der Waals (vdW) materials and realize a graphene-based Fabry-Perot (FP) QHI. By careful heterostructure design, we are able to measure pure Aharonov-Bohm (AB) interference effect in the integer QHE, a major technical challenge in finite size FP interferometers. We find that integer edge modes exhibit high visibility interference due to relatively large velocities and long phase coherence lengths. Our QHI with tunable QPCs presents a versatile platform for interferometer studies in vdW materials and enables future experiments in the fractional QHE.
We discuss spectropolarimetric measurements of photospheric (Fe I 630.25 nm) and chromospheric (Ca II 854.21 nm) spectral lines. Our long-term goal is to diagnose properties of the magnetic field near the base of the corona. We compare ground-based t wo-dimensional spectropolarimetric measurements with (almost) simultaneous space-based slit spectropolarimetry. The ground-based observations were obtained May 20, 2008, with IBIS in spectropolarimetric mode, The space observations were obtained with the Spectro-Polarimeter aboard the HINODE satellite. The agreement between the near-simultaneous co-spatial IBIS and HINODE Stokes-V profiles at 630.25 nm is excellent, with V/I amplitudes compatible with to within 1 %. IBIS QU measurements are affected by residual crosstalk from V, arising from calibration inaccuracies, not from any inherent limitation of imaging spectroscopy. We use a PCA analysis to quantify the detected cross talk. Chromospheric magnetic fields are difficult to constrain by polarization of Ca II lines alone. However, we demonstrate that high cadence, high angular resolution monochromatic images of fibrils in Ca II and H-alpha, can be used to improve the magnetic field constraints, under conditions of high electrical conductivity. Such work is possible only with time series datasets from two-dimensional spectroscopic instruments under conditions of good seeing.
73 - E. Janitz , M. Ruf , Y. Fontana 2017
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical r esponse up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا