ترغب بنشر مسار تعليمي؟ اضغط هنا

Shot noise in carbon nanotube based Fabry-Perot interferometers

98   0   0.0 ( 0 )
 نشر من قبل Takis Kontos
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.G. Herrmann




اسأل ChatGPT حول البحث

We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively. It allows to confirm the existence of two nearly degenerate orbitals. At resonance, the transmission of the nanotube approaches unity, and the nanotube becomes noiseless, as observed in quantum point contacts. In this weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence.


قيم البحث

اقرأ أيضاً

We report the observation of an intriguing behaviour in the transport properties of nanodevices operating in a regime between the Fabry-Perot and the Kondo limits. Using ultra-high quality nanotube devices, we study how the conductance oscillates whe n sweeping the gate voltage. Surprisingly, we observe a four-fold enhancement of the oscillation period upon decreasing temperature, signaling a crossover from single-electron tunneling to Fabry-Perot interference. These results suggest that the Fabry-Perot interference occurs in a regime where electrons are correlated. The link between the measured correlated Fabry-Perot oscillations and the SU(4) Kondo effect is discussed.
Quantum interferometers are powerful tools for probing the wave-nature and exchange statistics of indistinguishable particles. Of particular interest are interferometers formed by the chiral, one-dimensional (1D) edge channels of the quantum Hall eff ect (QHE) that guide electrons without dissipation. Using quantum point contacts (QPCs) as beamsplitters, these 1D channels can be split and recombined, enabling interference of charged particles. Such quantum Hall interferometers (QHIs) can be used for studying exchange statistics of anyonic quasiparticles. In this study we develop a robust QHI fabrication technique in van der Waals (vdW) materials and realize a graphene-based Fabry-Perot (FP) QHI. By careful heterostructure design, we are able to measure pure Aharonov-Bohm (AB) interference effect in the integer QHE, a major technical challenge in finite size FP interferometers. We find that integer edge modes exhibit high visibility interference due to relatively large velocities and long phase coherence lengths. Our QHI with tunable QPCs presents a versatile platform for interferometer studies in vdW materials and enables future experiments in the fractional QHE.
The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dim ensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of $13mathrm{mu e/sqrt{Hz}}$ in the 0.2-$0.8 mathrm{GHz}$ band.
High quality single wall carbon nanotube quantum dots have been made showing both metallic and semiconducting behavior. Some of the devices are identified as small band gap semiconducting nanotubes with relatively high broad conductance oscillations for hole transport through the valence band and low conductance Coulomb blockade oscillations for electron transport through the conduction band. The transition between these regimes illustrates that transport evolves from being wave-like transmission known as Fabry-Perot interference to single particle-like tunneling of electrons or holes. In the intermediate regime four Coulomb blockade peaks appear in each Fabry-Perot resonance, which is interpreted as entering the SU(4) Kondo regime. A bias shift of opposite polarity for the Kondo resonances for one electron and one hole in a shell is in some cases observed.
Two distinct types of magnetoresistance oscillations are observed in two electronic Fabry-Perot interferometers of different sizes in the integer quantum Hall regime. Measuring these oscillations as a function of magnetic field and gate voltages, we observe three signatures that distinguish the two types. The oscillations observed in a 2.0 square micron device are understood to arise from the Coulomb blockade mechanism, and those observed in an 18 square micron device from the Aharonov-Bohm mechanism. This work clarifies, provides ways to distinguish, and demonstrates control over, these distinct physical origins of resistance oscillations seen in electronic Fabry-Perot interferometers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا