ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabry-Perot versus slit spectropolarimetry of pores and active network. Analysis of IBIS and Hinode data

118   0   0.0 ( 0 )
 نشر من قبل Philip Judge Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss spectropolarimetric measurements of photospheric (Fe I 630.25 nm) and chromospheric (Ca II 854.21 nm) spectral lines. Our long-term goal is to diagnose properties of the magnetic field near the base of the corona. We compare ground-based two-dimensional spectropolarimetric measurements with (almost) simultaneous space-based slit spectropolarimetry. The ground-based observations were obtained May 20, 2008, with IBIS in spectropolarimetric mode, The space observations were obtained with the Spectro-Polarimeter aboard the HINODE satellite. The agreement between the near-simultaneous co-spatial IBIS and HINODE Stokes-V profiles at 630.25 nm is excellent, with V/I amplitudes compatible with to within 1 %. IBIS QU measurements are affected by residual crosstalk from V, arising from calibration inaccuracies, not from any inherent limitation of imaging spectroscopy. We use a PCA analysis to quantify the detected cross talk. Chromospheric magnetic fields are difficult to constrain by polarization of Ca II lines alone. However, we demonstrate that high cadence, high angular resolution monochromatic images of fibrils in Ca II and H-alpha, can be used to improve the magnetic field constraints, under conditions of high electrical conductivity. Such work is possible only with time series datasets from two-dimensional spectroscopic instruments under conditions of good seeing.

قيم البحث

اقرأ أيضاً

235 - V. Greco , A. Sordini , G. Cauzzi 2019
(Abridged): We define and test a new technique to accurately measure the cavity defects of air-spaced FPIs, including distortions due to the spectral tuning process typical of astronomical observations. We further develop a correction technique to maintain the shape of the cavity as constant as possible during the spectral scan. These are necessary steps to optimize the spectral transmission profile of a two-dimensional spectrograph using one or more FPIs. We devise a generalization of the techniques developed for the so-called phase-shifting interferometry to the case of FPIs. The technique is applicable to any FPI that can be tuned via changing the cavity spacing ($z$-axis), and can be used for any etalon regardless of the coating reflectivity. The major strength of our method is the ability to fully characterize the cavity during a spectral scan, allowing for the determination of scan-dependent modifications of the plates. As a test, we have applied this technique to three 50 mm diameter interferometers, with cavity gaps ranging between 600 micron and 3 mm, coated for use in the visible range. We obtain accurate and reliable measures of the cavity defects of air-spaced FPIs, and of their evolution during the entire spectral scan. Our main, and unexpected, result is that the relative tilt between the two FPI plates varies significantly during the spectral scan, and can dominate the cavity defects; in particular, we observe that the tilt component at the extremes of the scan is sensibly larger than at the center of the scan. Exploiting the capability of the electronic controllers to set the reference plane at any given spectral step, we develop a correction technique that allows the minimization of the tilt during a complete spectral scan. The correction remains highly stable over long periods, well beyond the typical duration of astronomical observations.
This document records the results of a comparison of the interferometer simulation Finesse against an analytic (MATLAB based) calculation of the alignment sensing signals of a Fabry Perot cavity. This task was started during the commissioning worksho p at the LIGO Livingston site between the 28.1. and 1.02 2013 with the aim of creating a reference example for validating numerical simulation tools. The FFT based simulation OSCAR joined the battle later.
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes su ch as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.
73 - Tom Schad 2011
Active regions often host large-scale gas flows in the chromosphere presumably directed along curved magnetic field lines. Spectropolarimetric observations of these flows are critical to understanding the nature and evolution of their anchoring magne tic structure. We discuss recent work with the Facility Infrared Spectropolarimeter (FIRS) located at the Dunn Solar Telescope in New Mexico to achieve high resolution imaging-spectropolarimetry of the Fe I lines at 630 nm, the Si I line at 1082.7 nm, and the He I triplet at 1083 nm. We present maps of the photospheric and chromospheric magnetic field vector above a sunspot as well as discuss characteristics of surrounding chromospheric flow structures.
We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves accor ding to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples, and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا