ترغب بنشر مسار تعليمي؟ اضغط هنا

A High-Mechanical Bandwidth Fabry-Perot Fiber Cavity

74   0   0.0 ( 0 )
 نشر من قبل Erika Janitz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical response up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.

قيم البحث

اقرأ أيضاً

A Fabry-Perot cavity polarimeter, installed in 2003 at HERA for the second phase of its operation, is described. The cavity polarimeter was designed to measure the longitudinal polarisation of the HERA electron beam with high precision for each elect ron bunch spaced with a time interval of 96ns. Within the cavity the laser intensity was routinely enhanced up to a few kW from its original value of 0.7W in a stable and controllable way. By interacting such a high intensity laser beam with the HERA electron beam it is possible to measure its polarisation with a relative statistical precision of 2% per bunch per minute. Detailed systematic studies have also been performed resulting in a systematic uncertainty of 1%.
Ultrahigh-resolution fiber-optic sensing has been demonstrated with a meter-long, high-finesse fiber Fabry-Perot interferometer (FFPI). The main technical challenge of large, environment-induced resonance frequency drift is addressed by locking the i nterrogation laser to a similar meter-long FFPI, which, along with the FFPI sensor, is thermally and mechanically isolated from the ambient. A nominal, noise-limited strain resolution of 800 f{epsilon} /sqrt(Hz) has been achieved within 1 to 100 Hz. Strain resolution further improves to 75 f{epsilon} /sqrt(Hz) at 1 kHz, 60 f{epsilon} /sqrt(Hz) at 2 kHz and 40 f{epsilon} /sqrt(Hz) at 23 kHz, demonstrating comparable or even better resolutions than proven techniques such as {pi}-phase-shifted and slow-light fiber Bragg gratings. Limitations of the current system are analyzed and improvement strategies are presented. The work lays out a feasible path toward ultrahigh-resolution fiber-optic sensing based on long FFPIs.
We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slab s that act as planar mirrors but can potentially allow injection of gases through their holes into the hollow core of the fiber. We have so far observed cavities with finesse of ~11 and Q factors of ~$4.5 times 10^5$, but much higher values should be achievable with improved fabrication procedures. We expect this device to enable development of new fiber lasers, enhanced gas spectroscopy, and studies of fundamental light-matter interactions and nonlinear optics.
We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral over lap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.
115 - A. Rakhman , M. Hafez , S. Nanda 2016
A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber a mplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$mu$A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا