ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of scanning acceleration on the leakage signal in magnetic flux leakage type of non-destructive testing

331   0   0.0 ( 0 )
 نشر من قبل Lintao Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This novel work investigates the influence of the inspection system acceleration on the leakage signal in magnetic flux leakage type of non-destructive testing. The research is addressed both through designed experiments and simulations. The results showed that the leakage signal, represented by using peak to peak value, decreases between 20% and 30% under acceleration. The simulation results indicated that the main reason for the decrease is due to the difference in the distortion of the magnetic field for cases with and without acceleration, which is the result of the different eddy current distributions in the specimen. The findings will help to allow the optimisation of the MFL system to ensure the main defect features can be measured accurately during the machine acceleration. It also shows the importance of conducting measurements at constant velocity, wherever possible.

قيم البحث

اقرأ أيضاً

We investigate the influence of the specimen velocity on the magnetic flux leakage with the aim of selecting the optimum sensor locations. Parametric numerical simulations where the specimen velocity was in the range [0.1-20] m$cdot$s$^{-1}$ were car ried out. As the specimen velocity is increased, the magnetic field varies from being symmetrical to being asymmetric. For the radial magnetic induction, the peak to peak value moves from the centre of the bridge towards the direction of the specimen movement. For the axial magnetic induction, the specimen velocity influence is dependent on the sensor location and a signal-velocity independent region was discussed.
Leakage currents through insulators received continuous attention for decades, owing to their importance for a wide range of technologies, and interest in their fundamental mechanisms. This work investigates the leakage currents through atomic layer deposited (ALD) $Al_2O_3$, grown on $SrTiO_3$. This combination is not only a key building block of oxide electronics, but also a clean system for studying the leakage mechanisms without interfacial layers that form on most of the conventional bottom electrodes. We show how tiny differences in the deposition process can have a dramatic effect on the leakage behavior. Detailed analysis of the leakage behavior rules out Fowler-Nordheim tunneling (FNT) and thermionic emission, and leaves the trap-related mechanisms of trap-assisted tunneling (TAT) and Poole-Frenkel as the likely mechanisms. After annealing the sample in air, the currents are reduced, which is ascribed to transition from trap-based mechanism to FNT, due to the elimination of the traps. The dramatic role of the assumptions regarding the flat-band voltage used for analysis is critically discussed, and the sensitivity of the extracted parameters on this magnitude is quantitatively described. We show that field effect devices based on structures similar to those described here, should be able to modulate $>10^{13} cm^{-2}$ electrons. These results provide general guidelines for reducing and analyzing leakage currents in insulators, and highlight some of the possible approaches and pitfalls in their analysis.
A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signa ls is derived. Applying the algorithm results in a phase-contrast sinogram, which is further used for image reconstruction. For experimental validation, a fast THz time-domain spectrometer (THz-TDS) in transmission geometry is employed, enabling CT measurements within several minutes. Quantitative evaluation of reconstructed 3D printed plastic profiles reveals the potential of our approach in non-destructive testing of plastic profiles.
Pyroelectric energy converter is a functional capacitor using pyroelectric material as the dielectric layer. Utilizing the first-order phase transformation of the material, the pyroelectric device can generate adequate electricity within small temper ature fluctuations. However, most pyroelectric capacitors are leaking during energy conversion. In this paper, we analyze the thermodynamics of pyroelectric energy conversion with consideration of the electric leakage. Our thermodynamic model is verified by experiments using three phase-transforming ferroelectric materials with different pyroelectric properties and leakage behaviors. We demonstrate that the impact of leakage for electric generation is prominent, and sometimes may be confused with the actual power generation by pyroelectricity. We discover an ideal material candidate, (Ba,Ca)(Ti,Zr,Ce)O$_3$, which exhibits large pyroelectric current and extremely low leakage current. The pyroelectric converter made of this material generates 1.95 $mu$A/cm$^2$ pyroelectric current density and 0.2 J/cm$^3$ pyroelectric work density even after 1389 thermodynamic conversion cycles.
The phosphorous activation in Ge n$^{+}$/p junctions is compared in terms of junction depth, by using laser spike annealing at 860{deg}C for 400$mu$s. The reverse junction leakage is found to strongly depend on the abruptness of dopant profiles. A sh allow and abrupt junction is shown to have lower phosphorous activation level, due to surface dose loss, and higher band-to-band tunneling (BTBT) leakage, when compared to the deep junction. Simulations were carried out to evaluate the lowest achievable OFF-state currents (I$_{OFF}$) for Ge double-gate FETs when using such an abrupt junction. Our results indicate that a Ge body thickness smaller than 5 nm is required to suppress the BTBT leakage and meet the requirement for the high performance devices defined by the International Technology Roadmap for Semiconductors (I$_{OFF}$ = 10$^{-7}$ A/$mu$m).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا