ﻻ يوجد ملخص باللغة العربية
A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signals is derived. Applying the algorithm results in a phase-contrast sinogram, which is further used for image reconstruction. For experimental validation, a fast THz time-domain spectrometer (THz-TDS) in transmission geometry is employed, enabling CT measurements within several minutes. Quantitative evaluation of reconstructed 3D printed plastic profiles reveals the potential of our approach in non-destructive testing of plastic profiles.
Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Previously, it has been shown that combining phase retrieval with computed
In this paper, we consider the imaging problem of terahertz (THz) tomography, in particular as it appears in non-destructive testing. We derive a nonlinear mathematical model describing a full THz tomography experiment, and consider linear approximat
This novel work investigates the influence of the inspection system acceleration on the leakage signal in magnetic flux leakage type of non-destructive testing. The research is addressed both through designed experiments and simulations. The results
Full phase control of THz emitting quantum cascade laser (QCL) combs has recently been demonstrated, opening new perspectives for even the most demanding applications. In this framework, simplifying the set-ups for control of these devices will help
In this work, the SLM-based phase retrieval system will be used to inspect carbon reinforced plastics samples (CFRP) under applying a thermal load. For this purpose, the system is used to capture a sequence of 8 spatially separated recording planes,