ﻻ يوجد ملخص باللغة العربية
We propose a vector auto-regressive (VAR) model with a low-rank constraint on the transition matrix. This new model is well suited to predict high-dimensional series that are highly correlated, or that are driven by a small number of hidden factors. We study estimation, prediction, and rank selection for this model in a very general setting. Our method shows excellent performances on a wide variety of simulated datasets. On macro-economic data from Giannone et al. (2015), our method is competitive with state-of-the-art methods in small dimension, and even improves on them in high dimension.
Spike-and-slab priors are popular Bayesian solutions for high-dimensional linear regression problems. Previous theoretical studies on spike-and-slab methods focus on specific prior formulations and use prior-dependent conditions and analyses, and thu
We study high-dimensional regression with missing entries in the covariates. A common strategy in practice is to emph{impute} the missing entries with an appropriate substitute and then implement a standard statistical procedure acting as if the cova
High-dimensional data models, often with low sample size, abound in many interdisciplinary studies, genomics and large biological systems being most noteworthy. The conventional assumption of multinormality or linearity of regression may not be plaus
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va
Risk modeling with EHR data is challenging due to a lack of direct observations on the disease outcome, and the high dimensionality of the candidate predictors. In this paper, we develop a surrogate assisted semi-supervised-learning (SAS) approach to