ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian high-dimensional linear regression with generic spike-and-slab priors

83   0   0.0 ( 0 )
 نشر من قبل Bai Jiang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Spike-and-slab priors are popular Bayesian solutions for high-dimensional linear regression problems. Previous theoretical studies on spike-and-slab methods focus on specific prior formulations and use prior-dependent conditions and analyses, and thus can not be generalized directly. In this paper, we propose a class of generic spike-and-slab priors and develop a unified framework to rigorously assess their theoretical properties. Technically, we provide general conditions under which generic spike-and-slab priors can achieve the nearly-optimal posterior contraction rate and the model selection consistency. Our results include those of Narisetty and He (2014) and Castillo et al. (2015) as special cases.

قيم البحث

اقرأ أيضاً

We study high-dimensional regression with missing entries in the covariates. A common strategy in practice is to emph{impute} the missing entries with an appropriate substitute and then implement a standard statistical procedure acting as if the cova riates were fully observed. Recent literature on this subject proposes instead to design a specific, often complicated or non-convex, algorithm tailored to the case of missing covariates. We investigate a simpler approach where we fill-in the missing entries with their conditional mean given the observed covariates. We show that this imputation scheme coupled with standard off-the-shelf procedures such as the LASSO and square-root LASSO retains the minimax estimation rate in the random-design setting where the covariates are i.i.d. sub-Gaussian. We further show that the square-root LASSO remains emph{pivotal} in this setting. It is often the case that the conditional expectation cannot be computed exactly and must be approximated from data. We study two cases where the covariates either follow an autoregressive (AR) process, or are jointly Gaussian with sparse precision matrix. We propose tractable estimators for the conditional expectation and then perform linear regression via LASSO, and show similar estimation rates in both cases. We complement our theoretical results with simulations on synthetic and semi-synthetic examples, illustrating not only the sharpness of our bounds, but also the broader utility of this strategy beyond our theoretical assumptions.
The Bayesian probit regression model (Albert and Chib (1993)) is popular and widely used for binary regression. While the improper flat prior for the regression coefficients is an appropriate choice in the absence of any prior information, a proper n ormal prior is desirable when prior information is available or in modern high dimensional settings where the number of coefficients ($p$) is greater than the sample size ($n$). For both choices of priors, the resulting posterior density is intractable and a Data Dugmentation (DA) Markov chain is used to generate approximate samples from the posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for constructing standard errors for Markov chain based estimates of posterior quantities. In this paper, we first show that in case of proper normal priors, the DA Markov chain is geometrically ergodic *for all* choices of the design matrix $X$, $n$ and $p$ (unlike the improper prior case, where $n geq p$ and another condition on $X$ are required for posterior propriety itself). We also derive sufficient conditions under which the DA Markov chain is trace-class, i.e., the eigenvalues of the corresponding operator are summable. In particular, this allows us to conclude that the Haar PX-DA sandwich algorithm (obtained by inserting an inexpensive extra step in between the two steps of the DA algorithm) is strictly better than the DA algorithm in an appropriate sense.
An important task in building regression models is to decide which regressors should be included in the final model. In a Bayesian approach, variable selection can be performed using mixture priors with a spike and a slab component for the effects su bject to selection. As the spike is concentrated at zero, variable selection is based on the probability of assigning the corresponding regression effect to the slab component. These posterior inclusion probabilities can be determined by MCMC sampling. In this paper we compare the MCMC implementations for several spike and slab priors with regard to posterior inclusion probabilities and their sampling efficiency for simulated data. Further, we investigate posterior inclusion probabilities analytically for different slabs in two simple settings. Application of variable selection with spike and slab priors is illustrated on a data set of psychiatric patients where the goal is to identify covariates affecting metabolism.
Variable selection in the linear regression model takes many apparent faces from both frequentist and Bayesian standpoints. In this paper we introduce a variable selection method referred to as a rescaled spike and slab model. We study the importance of prior hierarchical specifications and draw connections to frequentist generalized ridge regression estimation. Specifically, we study the usefulness of continuous bimodal priors to model hypervariance parameters, and the effect scaling has on the posterior mean through its relationship to penalization. Several model selection strategies, some frequentist and some Bayesian in nature, are developed and studied theoretically. We demonstrate the importance of selective shrinkage for effective variable selection in terms of risk misclassification, and show this is achieved using the posterior from a rescaled spike and slab model. We also show how to verify a procedures ability to reduce model uncertainty in finite samples using a specialized forward selection strategy. Using this tool, we illustrate the effectiveness of rescaled spike and slab models in reducing model uncertainty.
Variational Bayes (VB) is a popular scalable alternative to Markov chain Monte Carlo for Bayesian inference. We study a mean-field spike and slab VB approximation of widely used Bayesian model selection priors in sparse high-dimensional logistic regr ession. We provide non-asymptotic theoretical guarantees for the VB posterior in both $ell_2$ and prediction loss for a sparse truth, giving optimal (minimax) convergence rates. Since the VB algorithm does not depend on the unknown truth to achieve optimality, our results shed light on effective prior choices. We confirm the improved performance of our VB algorithm over common sparse VB approaches in a numerical study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا