ترغب بنشر مسار تعليمي؟ اضغط هنا

Imputation for High-Dimensional Linear Regression

128   0   0.0 ( 0 )
 نشر من قبل Kabir Chandrasekher
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study high-dimensional regression with missing entries in the covariates. A common strategy in practice is to emph{impute} the missing entries with an appropriate substitute and then implement a standard statistical procedure acting as if the covariates were fully observed. Recent literature on this subject proposes instead to design a specific, often complicated or non-convex, algorithm tailored to the case of missing covariates. We investigate a simpler approach where we fill-in the missing entries with their conditional mean given the observed covariates. We show that this imputation scheme coupled with standard off-the-shelf procedures such as the LASSO and square-root LASSO retains the minimax estimation rate in the random-design setting where the covariates are i.i.d. sub-Gaussian. We further show that the square-root LASSO remains emph{pivotal} in this setting. It is often the case that the conditional expectation cannot be computed exactly and must be approximated from data. We study two cases where the covariates either follow an autoregressive (AR) process, or are jointly Gaussian with sparse precision matrix. We propose tractable estimators for the conditional expectation and then perform linear regression via LASSO, and show similar estimation rates in both cases. We complement our theoretical results with simulations on synthetic and semi-synthetic examples, illustrating not only the sharpness of our bounds, but also the broader utility of this strategy beyond our theoretical assumptions.



قيم البحث

اقرأ أيضاً

82 - Bai Jiang , Qiang Sun 2019
Spike-and-slab priors are popular Bayesian solutions for high-dimensional linear regression problems. Previous theoretical studies on spike-and-slab methods focus on specific prior formulations and use prior-dependent conditions and analyses, and thu s can not be generalized directly. In this paper, we propose a class of generic spike-and-slab priors and develop a unified framework to rigorously assess their theoretical properties. Technically, we provide general conditions under which generic spike-and-slab priors can achieve the nearly-optimal posterior contraction rate and the model selection consistency. Our results include those of Narisetty and He (2014) and Castillo et al. (2015) as special cases.
We study high-dimensional Bayesian linear regression with product priors. Using the nascent theory of non-linear large deviations (Chatterjee and Dembo,2016), we derive sufficient conditions for the leading-order correctness of the naive mean-field a pproximation to the log-normalizing constant of the posterior distribution. Subsequently, assuming a true linear model for the observed data, we derive a limiting infinite dimensional variational formula for the log normalizing constant of the posterior. Furthermore, we establish that under an additional separation condition, the variational problem has a unique optimizer, and this optimizer governs the probabilistic properties of the posterior distribution. We provide intuitive sufficient conditions for the validity of this separation condition. Finally, we illustrate our results on concrete examples with specific design matrices.
84 - Anru Zhang , Rungang Han 2018
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va lue Decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection & thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates.
102 - Daren Wang , Zifeng Zhao , Yi Yu 2020
We study a functional linear regression model that deals with functional responses and allows for both functional covariates and high-dimensional vector covariates. The proposed model is flexible and nests several functional regression models in the literature as special cases. Based on the theory of reproducing kernel Hilbert spaces (RKHS), we propose a penalized least squares estimator that can accommodate functional variables observed on discrete sample points. Besides a conventional smoothness penalty, a group Lasso-type penalty is further imposed to induce sparsity in the high-dimensional vector predictors. We derive finite sample theoretical guarantees and show that the excess prediction risk of our estimator is minimax optimal. Furthermore, our analysis reveals an interesting phase transition phenomenon that the optimal excess risk is determined jointly by the smoothness and the sparsity of the functional regression coefficients. A novel efficient optimization algorithm based on iterative coordinate descent is devised to handle the smoothness and group penalties simultaneously. Simulation studies and real data applications illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.
212 - Jue Hou , Zijian Guo , Tianxi Cai 2021
Risk modeling with EHR data is challenging due to a lack of direct observations on the disease outcome, and the high dimensionality of the candidate predictors. In this paper, we develop a surrogate assisted semi-supervised-learning (SAS) approach to risk modeling with high dimensional predictors, leveraging a large unlabeled data on candidate predictors and surrogates of outcome, as well as a small labeled data with annotated outcomes. The SAS procedure borrows information from surrogates along with candidate predictors to impute the unobserved outcomes via a sparse working imputation model with moment conditions to achieve robustness against mis-specification in the imputation model and a one-step bias correction to enable interval estimation for the predicted risk. We demonstrate that the SAS procedure provides valid inference for the predicted risk derived from a high dimensional working model, even when the underlying risk prediction model is dense and the risk model is mis-specified. We present an extensive simulation study to demonstrate the superiority of our SSL approach compared to existing supervised methods. We apply the method to derive genetic risk prediction of type-2 diabetes mellitus using a EHR biobank cohort.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا