ترغب بنشر مسار تعليمي؟ اضغط هنا

Kendalls tau in high-dimensional genomic parsimony

510   0   0.0 ( 0 )
 نشر من قبل Pranab K. Sen
 تاريخ النشر 2008
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Pranab K. Sen




اسأل ChatGPT حول البحث

High-dimensional data models, often with low sample size, abound in many interdisciplinary studies, genomics and large biological systems being most noteworthy. The conventional assumption of multinormality or linearity of regression may not be plausible for such models which are likely to be statistically complex due to a large number of parameters as well as various underlying restraints. As such, parametric approaches may not be very effective. Anything beyond parametrics, albeit, having increased scope and robustness perspectives, may generally be baffled by the low sample size and hence unable to give reasonable margins of errors. Kendalls tau statistic is exploited in this context with emphasis on dimensional rather than sample size asymptotics. The Chen--Stein theorem has been thoroughly appraised in this study. Applications of these findings in some microarray data models are illustrated.



قيم البحث

اقرأ أيضاً

83 - Zhigang Bao 2017
In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy-Wid om law for its largest eigenvalue. It is the first Tracy-Widom law for a nonparametric random matrix model, and also the first Tracy-Widom law for a high-dimensional U-statistic.
We study high-dimensional regression with missing entries in the covariates. A common strategy in practice is to emph{impute} the missing entries with an appropriate substitute and then implement a standard statistical procedure acting as if the cova riates were fully observed. Recent literature on this subject proposes instead to design a specific, often complicated or non-convex, algorithm tailored to the case of missing covariates. We investigate a simpler approach where we fill-in the missing entries with their conditional mean given the observed covariates. We show that this imputation scheme coupled with standard off-the-shelf procedures such as the LASSO and square-root LASSO retains the minimax estimation rate in the random-design setting where the covariates are i.i.d. sub-Gaussian. We further show that the square-root LASSO remains emph{pivotal} in this setting. It is often the case that the conditional expectation cannot be computed exactly and must be approximated from data. We study two cases where the covariates either follow an autoregressive (AR) process, or are jointly Gaussian with sparse precision matrix. We propose tractable estimators for the conditional expectation and then perform linear regression via LASSO, and show similar estimation rates in both cases. We complement our theoretical results with simulations on synthetic and semi-synthetic examples, illustrating not only the sharpness of our bounds, but also the broader utility of this strategy beyond our theoretical assumptions.
We propose a vector auto-regressive (VAR) model with a low-rank constraint on the transition matrix. This new model is well suited to predict high-dimensional series that are highly correlated, or that are driven by a small number of hidden factors. We study estimation, prediction, and rank selection for this model in a very general setting. Our method shows excellent performances on a wide variety of simulated datasets. On macro-economic data from Giannone et al. (2015), our method is competitive with state-of-the-art methods in small dimension, and even improves on them in high dimension.
84 - Anru Zhang , Rungang Han 2018
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va lue Decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection & thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates.
The concordance signature of a multivariate continuous distribution is the vector of concordance probabilities for margins of all orders; it underlies the bivariate and multivariate Kendalls tau measure of concordance. It is shown that every attainab le concordance signature is equal to the concordance signature of a unique mixture of the extremal copulas, that is the copulas with extremal correlation matrices consisting exclusively of 1s and -1s. This result establishes that the set of attainable Kendall rank correlation matrices of multivariate continuous distributions in arbitrary dimension is the set of convex combinations of extremal correlation matrices, a set known as the cut polytope. A methodology for testing the attainability of concordance signatures using linear optimization and convex analysis is provided. The elliptical copulas are shown to yield a strict subset of the attainable concordance signatures as well as a strict subset of the attainable Kendall rank correlation matrices; the Student t copula is seen to converge to a mixture of extremal copulas sharing its concordance signature with all elliptical distributions that have the same correlation matrix. A method of estimating an attainable concordance signature from data is derived and shown to correspond to using standard estimates of Kendalls tau in the absence of ties. The methodology has application to Monte Carlo simulations of dependent random variables as well as expert elicitation of consistent systems of Kendalls tau dependence measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا