ترغب بنشر مسار تعليمي؟ اضغط هنا

The Host-Galaxy Properties of Type 1 Versus Type 2 Active Galactic Nuclei

63   0   0.0 ( 0 )
 نشر من قبل Fan Zou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unified model of active galactic nuclei (AGNs) proposes that different AGN optical spectral types are caused by different viewing angles with respect to an obscuring torus. Therefore, this model predicts that type 1 and type 2 AGNs should have similar host-galaxy properties. We investigate this prediction with 2463 X-ray selected AGNs in the COSMOS field. We divide our sample into type 1 and type 2 AGNs based on their spectra, morphologies, and variability. We derive their host-galaxy stellar masses ($M_star$) through SED fitting, and find that the host $M_star$ of type 1 AGNs tend to be slightly smaller than those of type 2 AGNs by $Deltaoverline{mathrm{log}M_star}approx0.2~mathrm{dex}$ ($approx 4sigma$ significance). Besides deriving star-formation rates (SFRs) from SED fitting, we also utilize far-infrared (FIR) photometry and a stacking method to obtain FIR-based SFRs. We find that the SFRs of type 1 and type 2 sources are similar once their redshifts and X-ray luminosities are controlled. We also investigate cosmic environment, and find that the surface number densities (sub-Mpc) and cosmic-web environments ($approx 1text{--}10$~Mpc) are similar for both populations. In summary, our analyses show that the host galaxies of type 1 and type 2 AGNs have similar SFR and cosmic environment in general, but the former tend to have lower $M_star$ than the latter. The difference in $M_star$ indicates that the AGN unification model is not strictly correct and both host galaxy and torus may contribute to the optical obscuration of AGNs.



قيم البحث

اقرأ أيضاً

We present detailed image analysis of rest-frame optical images of 235 low-redshift ($z leq$ 0.35) type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars, as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H$beta$ FWHM $leq 2000$ km~s$^{-1}$) type 1 AGNs, in contrast to their broad-line (H$beta$ FWHM $> 2000$ km~s$^{-1}$) counterparts, are preferentially hosted in later type, lower luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests narrow-line type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier type (bulge-dominated), more massive hosts, although a minority of them appears to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.
A statistical study of intermediate Palomar Transient Factory supernovae (SNe) in Type 1 AGN has shown a major deficit of supernovae around Type 1 AGN host galaxies, with respect to Type 2 AGN hosts. The aim of this work is to test whether there is a ny preference for Type 1 AGN to host SN of a specific kind. Through the analysis of SN occurrence and their type (thermonuclear vs core-collapse), we can directly link the type of stars producing the SN events, thus this is an indirect way to study host galaxies in Type 1 AGN. We examine the detection fractions of SNe, the host galaxies and compare the sample properties to typical host galaxies in the Open Supernova Catalog (OSC; Guillochon et al. 2017). The majority of the host galaxies in the AGN sample are late-type, similar to typical galaxies hosting SN within the OSC. The findings are supportive of a deficiency of SNe near Type 1 AGN, although we cannot with certainty assess the overall detection fractions of SNe in Type 1 AGN relative to other SN host galaxies. We can state that Type 1 AGN has equal detection fractions of thermonuclear vs core-collapse SNe. However, we note the possibility of a higher detection rate of core-collapse supernovae in Type-1 AGN with insecure AGN classifications.
We present the latest results of a semi-analytic model of galaxy formation, New Numerical Galaxy Catalogue, which is combined with large cosmological N-body simulations. This model can reproduce statistical properties of galaxies at z < 6.0. We focus on the properties of active galactic nuclei (AGNs) and supermassive black holes, especially on the accretion timescale onto black holes. We find that the number density of AGNs at z < 1.5 and at hard X-ray luminosity 10^{ 44 }< erg/s is underestimated compared with recent observational estimates when we assume the exponentially decreasing accretion rate and the accretion timescale which is proportional to the dynamical time of the host halo or the bulge, as is often assumed in semi-analytic models. We show that to solve this discrepancy, the accretion timescale of such less luminous AGNs instead should be a function of the black hole mass and the accreted gas mass. This timescale can be obtained from a phenomenological modelling of the gas angular momentum loss in the circumnuclear torus and/or the accretion disc. Such models predict a longer accretion timescale for less luminous AGNs at z < 1.0 than bright QSOs whose accretion timescale would be 10^{ 7-8 } yr. With this newly introduced accretion timescale, our model can explain the observed luminosity functions of AGNs at z < 6.0.
The mass-metallicity relation (MZR) of type-2 active galactic nuclei (AGNs) at 1.2 < z < 4.0 is investigated by using high-z radio galaxies (HzRGs) and X-ray selected radio-quiet AGNs. We combine new rest-frame ultraviolet (UV) spectra of two radio-q uiet type-2 AGNs obtained with FOCAS on the Subaru Telescope with existing rest-frame UV emission lines, i.e., CIV1549, HeII1640, and CIII]1909, of a sample of 16 HzRGs and 6 additional X-ray selected type-2 AGNs, whose host stellar masses have been estimated in literature. We divided our sample in three stellar mass bins and calculated averaged emission-line flux ratios of CIV1549/HeII1640 and CIII]1909/CIV1549. Comparing observed emission-line flux ratios with photoionization model predictions, we estimated narrow line region (NLR) metallicities for each mass bin. We found that there is a positive correlation between NLR metallicities and stellar masses of type-2 AGNs at z ~ 3. This is the first indication that AGN metallicities are related to their hosts, i.e., stellar mass. Since NLR metallicities and stellar masses follow a similar relation as the MZR in star-forming galaxies at similar redshifts, our results indicate that NLR metallicities are related to those of the host galaxies. This study highlights the importance of considering lower-mass X-ray selected AGNs in addition to radio galaxies to explore the metallicity properties of NLRs at high redshift.
We use new X-ray data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR), near-infrared (NIR) fluxes, and mid-infrared (MIR) spectra of a sample of 24 unobscured type 1 active galactic nuclei (AGN) to study the correlation between vario us hard X-ray bands between 3 and 80 keV and the infrared (IR) emission. The IR to X-ray correlation spectrum (IRXCS) shows a maximum at ~15-20 micron, coincident with the peak of the AGN contribution to the MIR spectra of the majority of the sample. There is also a NIR correlation peak at ~2 micron, which we associate with the NIR bump observed in some type 1 AGN at ~1-5 micron and is likely produced by nuclear hot dust emission. The IRXCS shows practically the same behaviour in all the X-ray bands considered, indicating a common origin for all of them. We finally evaluated correlations between the X-ray luminosities and various MIR emission lines. All the lines show a good correlation with the hard X-rays (rho>0.7), but we do not find the expected correlation between their ionization potentials and the strength of the IRXCS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا