ترغب بنشر مسار تعليمي؟ اضغط هنا

The New Numerical Galaxy Catalogue ( u^2 GC): Properties of Active Galactic Nuclei and Their Host Galaxies

86   0   0.0 ( 0 )
 نشر من قبل Hikari Shirakata
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hikari Shirakata




اسأل ChatGPT حول البحث

We present the latest results of a semi-analytic model of galaxy formation, New Numerical Galaxy Catalogue, which is combined with large cosmological N-body simulations. This model can reproduce statistical properties of galaxies at z < 6.0. We focus on the properties of active galactic nuclei (AGNs) and supermassive black holes, especially on the accretion timescale onto black holes. We find that the number density of AGNs at z < 1.5 and at hard X-ray luminosity 10^{ 44 }< erg/s is underestimated compared with recent observational estimates when we assume the exponentially decreasing accretion rate and the accretion timescale which is proportional to the dynamical time of the host halo or the bulge, as is often assumed in semi-analytic models. We show that to solve this discrepancy, the accretion timescale of such less luminous AGNs instead should be a function of the black hole mass and the accreted gas mass. This timescale can be obtained from a phenomenological modelling of the gas angular momentum loss in the circumnuclear torus and/or the accretion disc. Such models predict a longer accretion timescale for less luminous AGNs at z < 1.0 than bright QSOs whose accretion timescale would be 10^{ 7-8 } yr. With this newly introduced accretion timescale, our model can explain the observed luminosity functions of AGNs at z < 6.0.



قيم البحث

اقرأ أيضاً

The unified model of active galactic nuclei (AGNs) proposes that different AGN optical spectral types are caused by different viewing angles with respect to an obscuring torus. Therefore, this model predicts that type 1 and type 2 AGNs should have si milar host-galaxy properties. We investigate this prediction with 2463 X-ray selected AGNs in the COSMOS field. We divide our sample into type 1 and type 2 AGNs based on their spectra, morphologies, and variability. We derive their host-galaxy stellar masses ($M_star$) through SED fitting, and find that the host $M_star$ of type 1 AGNs tend to be slightly smaller than those of type 2 AGNs by $Deltaoverline{mathrm{log}M_star}approx0.2~mathrm{dex}$ ($approx 4sigma$ significance). Besides deriving star-formation rates (SFRs) from SED fitting, we also utilize far-infrared (FIR) photometry and a stacking method to obtain FIR-based SFRs. We find that the SFRs of type 1 and type 2 sources are similar once their redshifts and X-ray luminosities are controlled. We also investigate cosmic environment, and find that the surface number densities (sub-Mpc) and cosmic-web environments ($approx 1text{--}10$~Mpc) are similar for both populations. In summary, our analyses show that the host galaxies of type 1 and type 2 AGNs have similar SFR and cosmic environment in general, but the former tend to have lower $M_star$ than the latter. The difference in $M_star$ indicates that the AGN unification model is not strictly correct and both host galaxy and torus may contribute to the optical obscuration of AGNs.
We construct a model of H$alpha$ emitters (HAEs) based on a semi-analytic galaxy formation model, the New Numerical Galaxy Catalog ($ u^2$GC). In this paper, we report our estimate for the field variance of the HAE distribution. By calculating the H$ alpha$ luminosity from the star-formation rate of galaxies, our model well reproduces the observed H$alpha$ luminosity function (LF) at $z=0.4$. The large volume of the $ u^2$GC makes it possible to examine the spatial distribution of HAEs over a region of (411.8 Mpc)$^3$ in the comoving scale. The surface number density of $z=0.4$ HAEs with $L_{rm Halpha} geq 10^{40}$ erg s$^{-1}$ is 308.9 deg$^{-2}$. We have confirmed that the HAE is a useful tracer for the large-scale structure of the Universe because of their significant overdensity ($>$ 5$sigma$) at clusters and the filamentary structures. The H$alpha$ LFs within a survey area of $sim$2 deg$^2$ (typical for previous observational studies) show a significant field variance up to $sim$1 dex. Based on our model, one can estimate the variance on the H$alpha$ LFs within given survey areas.
151 - Ryan C. Hickox 2016
Our understanding of the cosmic evolution of supermassive black holes (SMBHs) has been revolutionized by the advent of large multiwavelength extragalactic surveys, which have enabled detailed statistical studies of the host galaxies and large-scale s tructures of active galactic nuclei (AGN). We give an overview of some recent results on SMBH evolution, including the connection between AGN activity and star formation in galaxies, the role of galaxy mergers in fueling AGN activity, the nature of luminous obscured AGN, and the connection between AGN and their host dark matter halos. We conclude by looking to the future of large-scale extragalactic X-ray and spectroscopic surveys.
In the context of the upcoming SRG/eROSITA survey, we present an N-body simulation-based mock catalogue for X-ray selected AGN samples. The model reproduces the observed hard X-ray AGN luminosity function (XLF) and the soft X-ray logN-logS from redsh ift 0 to 6. The XLF is reproduced to within $pm5%$ and the logN-logS to within $pm20%$. We develop a joint X-ray -- optical extinction and classification model. We adopt a set of empirical spectral energy distributions to predict observed magnitudes in the UV, optical and NIR. With the latest eROSITA all sky survey sensitivity model, we create a high-fidelity full-sky mock catalogue of X-ray AGN. It predicts their distributions in right ascension, declination, redshift and fluxes. Using empirical medium resolution optical spectral templates and an exposure time calculator, we find that $1.1times10^6$ ($4times10^5$) fiber-hours are needed to follow-up spectroscopically from the ground the detected X-ray AGN with an optical magnitude $21<r<22.8$ ($22.8<r<25$) with a 4-m (8-m) class multi-object spectroscopic facility. We find that future clustering studies will measure the AGN bias to the percent level at redshift $z<1.2$ and should discriminate possible scenarios of galaxy-AGN co-evolution. We predict the accuracy to which the baryon acoustic oscillation standard ruler will be measured using X-ray AGN: better than 3% for AGN between redshift 0.5 to 3 and better than 1% using the Ly$alpha$ forest of X-ray QSOs discovered between redshift 2 and 3. eROSITA will provide an outstanding set of targets for future galaxy evolution and cosmological studies.
107 - Ryu Makiya 2015
We present a new cosmological galaxy formation model, $ u^2$GC, as an updated version of our previous model $ u$GC. We adopt the so-called semi-analytic approach, in which the formation history of dark matter halos is computed by ${it N}$-body simula tions, while the baryon physics such as gas cooling, star formation and supernova feedback are simply modeled by phenomenological equations. Major updates of the model are as follows: (1) the merger trees of dark matter halos are constructed in state-of-the-art ${it N}$-body simulations, (2) we introduce the formation and evolution process of supermassive black holes and the suppression of gas cooling due to active galactic nucleus (AGN) activity, (3) we include heating of the intergalactic gas by the cosmic UV background, and (4) we tune some free parameters related to the astrophysical processes using a Markov chain Monte Carlo method. Our ${it N}$-body simulations of dark matter halos have unprecedented box size and mass resolution (the largest simulation contains 550 billion particles in a 1.12 Gpc/h box), enabling the study of much smaller and rarer objects. The model was tuned to fit the luminosity functions of local galaxies and mass function of neutral hydrogen. Local observations, such as the Tully-Fisher relation, size-magnitude relation of spiral galaxies and scaling relation between the bulge mass and black hole mass were well reproduced by the model. Moreover, the model also well reproduced the cosmic star formation history and the redshift evolution of rest-frame ${it K}$-band luminosity functions. The numerical catalog of the simulated galaxies and AGNs is publicly available on the web.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا