ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining supernova events in Type 1 active galactic nuclei

135   0   0.0 ( 0 )
 نشر من قبل Lars Mattsson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A statistical study of intermediate Palomar Transient Factory supernovae (SNe) in Type 1 AGN has shown a major deficit of supernovae around Type 1 AGN host galaxies, with respect to Type 2 AGN hosts. The aim of this work is to test whether there is any preference for Type 1 AGN to host SN of a specific kind. Through the analysis of SN occurrence and their type (thermonuclear vs core-collapse), we can directly link the type of stars producing the SN events, thus this is an indirect way to study host galaxies in Type 1 AGN. We examine the detection fractions of SNe, the host galaxies and compare the sample properties to typical host galaxies in the Open Supernova Catalog (OSC; Guillochon et al. 2017). The majority of the host galaxies in the AGN sample are late-type, similar to typical galaxies hosting SN within the OSC. The findings are supportive of a deficiency of SNe near Type 1 AGN, although we cannot with certainty assess the overall detection fractions of SNe in Type 1 AGN relative to other SN host galaxies. We can state that Type 1 AGN has equal detection fractions of thermonuclear vs core-collapse SNe. However, we note the possibility of a higher detection rate of core-collapse supernovae in Type-1 AGN with insecure AGN classifications.

قيم البحث

اقرأ أيضاً

The unified model of active galactic nuclei (AGNs) proposes that different AGN optical spectral types are caused by different viewing angles with respect to an obscuring torus. Therefore, this model predicts that type 1 and type 2 AGNs should have si milar host-galaxy properties. We investigate this prediction with 2463 X-ray selected AGNs in the COSMOS field. We divide our sample into type 1 and type 2 AGNs based on their spectra, morphologies, and variability. We derive their host-galaxy stellar masses ($M_star$) through SED fitting, and find that the host $M_star$ of type 1 AGNs tend to be slightly smaller than those of type 2 AGNs by $Deltaoverline{mathrm{log}M_star}approx0.2~mathrm{dex}$ ($approx 4sigma$ significance). Besides deriving star-formation rates (SFRs) from SED fitting, we also utilize far-infrared (FIR) photometry and a stacking method to obtain FIR-based SFRs. We find that the SFRs of type 1 and type 2 sources are similar once their redshifts and X-ray luminosities are controlled. We also investigate cosmic environment, and find that the surface number densities (sub-Mpc) and cosmic-web environments ($approx 1text{--}10$~Mpc) are similar for both populations. In summary, our analyses show that the host galaxies of type 1 and type 2 AGNs have similar SFR and cosmic environment in general, but the former tend to have lower $M_star$ than the latter. The difference in $M_star$ indicates that the AGN unification model is not strictly correct and both host galaxy and torus may contribute to the optical obscuration of AGNs.
Recent time-resolved spectral studies of a few Active Galactic Nuclei in hard X-rays revealed occultations of the X-ray primary source probably by Broad Line Region (BLR) clouds. An important open question on the structure of the circumnuclear medium of AGN is whether this phenomenon is common, i.e. whether a significant fraction of the X-ray absorption in AGN is due to BLR clouds. Here we present the first attempt to perform this kind of analysis in a homogeneous way, on a statistically representative sample of AGN, consisting of the ~40 brightest sources with long XMM-Newton and/or Suzaku observations. We describe our method, based on a simple analysis of hardness-ratio light curves, and its validation through a complete spectroscopic analysis of a few cases. We find that X-ray eclipses, most probably due to clouds at the distance of the BLR, are common in sources where the expected occultation time is compatible with the observation time, while they are not found in sources with longer estimated occultation times. Overall, our results show that occultations by BLR clouds may be responsible for most of the observed X-ray spectral variability at energies higher than 2 keV, on time scales longer than a few ks.
We have conducted an extensive X-ray spectral variability study of a sample of 20 Compton-thin type II galaxies using broad band spectra from XMM-Newton, Chandra, and Suzaku. The aim is to study the variability of the neutral intrinsic X-ray obscurat ion along the line of sight and investigate the properties and location of the dominant component of the X-ray-obscuring gas. The observations are sensitive to absorption columns of $N_{rm H} sim 10^{20.5-24} {rm cm^{-2}}$ of fully- and partially-covering neutral and/or lowly-ionized gas on timescales spanning days to well over a decade. We detected variability in the column density of the full-covering absorber in 7/20 sources, on timescales of months-years, indicating a component of compact-scale X-ray-obscuring gas lying along the line of sight of each of these objects. Our results imply that torus models incorporating clouds or overdense regions should account for line of sight column densities as low as $sim$ a few $times 10^{21}$ cm$^{-2}$. However, 13/20 sources yielded no detection of significant variability in the full-covering obscurer, with upper limits to ${Delta}N_{rm H}$ spanning $10^{21-23}$ cm$^{-2}$. The dominant absorbing media in these systems could be distant, such as kpc-scale dusty structures associated with the host galaxy, or a homogeneous medium along the line of sight. Thus, we find that overall, strong variability in full-covering obscurers is not highly prevalent in Compton-thin type IIs, at least for our sample, in contrast to previous results in the literature. Finally, 11/20 sources required a partial-covering, obscuring component in all or some of their observations, consistent with clumpy near-Compton-thick compact-scale gas.
92 - Y. Yang , I. Bartos , G. Fragione 2021
Active galactic nuclei (AGNs) can act as black hole assembly lines, funneling some of the stellar-mass black holes from the vicinity of the galactic center into the inner plane of the AGN disk where the black holes can merge through dynamical frictio n and gravitational wave emission. Here, we show that stars near the galactic center are also brought into the AGN disk, where they can be tidally disrupted by the stellar-mass black holes in the disk. Such micro-tidal disruption events (micro-TDEs) could be useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of $sim170$ Gpc$^{-3}$yr$^{-1}$. Their cleanest observational probe may be the detection of tidal disruption in AGNs by heavy supermassive black holes ($M_{bullet}gtrsim10^{8}$ M$_{odot}$) so that cannot tidally disrupt solar-type stars. We discuss two such TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).
Changing-look phenomenon observed now in a growing number of active galaxies challenges our understanding of the accretion process close to a black hole. We propose a simple explanation for periodic outbursts in sources operating at a few per cent of the Eddington limit. The mechanism is based on two relatively well understood phenomena: radiation pressure instability and formation of the inner optically thin Advection-Dominated Accretion Flow. The limit cycle behaviour takes place in a relatively narrow transition zone between the standard disk and optically thin flow. Large changes in the cold disk are due to the irradiation by the hot flow with accretion rate strongly varying during the cycle. The model gives quantitative predictions and works well for multiple outbursts of NGC 1566.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا