ﻻ يوجد ملخص باللغة العربية
We use new X-ray data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR), near-infrared (NIR) fluxes, and mid-infrared (MIR) spectra of a sample of 24 unobscured type 1 active galactic nuclei (AGN) to study the correlation between various hard X-ray bands between 3 and 80 keV and the infrared (IR) emission. The IR to X-ray correlation spectrum (IRXCS) shows a maximum at ~15-20 micron, coincident with the peak of the AGN contribution to the MIR spectra of the majority of the sample. There is also a NIR correlation peak at ~2 micron, which we associate with the NIR bump observed in some type 1 AGN at ~1-5 micron and is likely produced by nuclear hot dust emission. The IRXCS shows practically the same behaviour in all the X-ray bands considered, indicating a common origin for all of them. We finally evaluated correlations between the X-ray luminosities and various MIR emission lines. All the lines show a good correlation with the hard X-rays (rho>0.7), but we do not find the expected correlation between their ionization potentials and the strength of the IRXCS.
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV
We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope,
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer
A statistical study of intermediate Palomar Transient Factory supernovae (SNe) in Type 1 AGN has shown a major deficit of supernovae around Type 1 AGN host galaxies, with respect to Type 2 AGN hosts. The aim of this work is to test whether there is a
The unified model of active galactic nuclei (AGNs) proposes that different AGN optical spectral types are caused by different viewing angles with respect to an obscuring torus. Therefore, this model predicts that type 1 and type 2 AGNs should have si