ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Acoustic Event Detection based on tri-training

94   0   0.0 ( 0 )
 نشر من قبل Bowen Shi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels for acoustic events are expensive to obtain, and relevant acoustic event audios can be limited, especially for rare events. In this paper we leverage an Internet-scale unlabeled dataset with potential domain shift to improve the detection of acoustic events. Based on the classic tri-training approach, our proposed method shows accuracy improvement over both the supervised training baseline, and semisupervised self-training set-up, in all pre-defined acoustic event detection tasks. As our approach relies on ensemble models, we further show the improvements can be distilled to a single model via knowledge distillation, with the resulting single student model maintaining high accuracy of teacher ensemble models.



قيم البحث

اقرأ أيضاً

Acoustic Event Detection (AED), aiming at detecting categories of events based on audio signals, has found application in many intelligent systems. Recently deep neural network significantly advances this field and reduces detection errors to a large scale. However how to efficiently execute deep models in AED has received much less attention. Meanwhile state-of-the-art AED models are based on large deep models, which are computational demanding and challenging to deploy on devices with constrained computational resources. In this paper, we present a simple yet effective compression approach which jointly leverages knowledge distillation and quantization to compress larger network (teacher model) into compact network (student model). Experimental results show proposed technique not only lowers error rate of original compact network by 15% through distillation but also further reduces its model size to a large extent (2% of teacher, 12% of full-precision student) through quantization.
In this paper, we present a compression approach based on the combination of low-rank matrix factorization and quantization training, to reduce complexity for neural network based acoustic event detection (AED) models. Our experimental results show t his combined compression approach is very effective. For a three-layer long short-term memory (LSTM) based AED model, the original model size can be reduced to 1% with negligible loss of accuracy. Our approach enables the feasibility of deploying AED for resource-constraint applications.
Speaker attribution is required in many real-world applications, such as meeting transcription, where speaker identity is assigned to each utterance according to speaker voice profiles. In this paper, we propose to solve the speaker attribution probl em by using graph-based semi-supervised learning methods. A graph of speech segments is built for each session, on which segments from voice profiles are represented by labeled nodes while segments from test utterances are unlabeled nodes. The weight of edges between nodes is evaluated by the similarities between the pretrained speaker embeddings of speech segments. Speaker attribution then becomes a semi-supervised learning problem on graphs, on which two graph-based methods are applied: label propagation (LP) and graph neural networks (GNNs). The proposed approaches are able to utilize the structural information of the graph to improve speaker attribution performance. Experimental results on real meeting data show that the graph based approaches reduce speaker attribution error by up to 68% compared to a baseline speaker identification approach that processes each utterance independently.
Automatic speech quality assessment is an important, transversal task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen recording conditions, and a lack of flexibility of existing approaches. In this work, we tackle these problems with a semi-supervised learning approach, combining available annotations with programmatically generated data, and using 3 different optimization criteria together with 5 complementary auxiliary tasks. Our results show that such a semi-supervised approach can cut the error of existing methods by more than 36%, while providing additional benefits in terms of reusable features or auxiliary outputs. Improvement is further corroborated with an out-of-sample test showing promising generalization capabilities.
Domain mismatch is a noteworthy issue in acoustic event detection tasks, as the target domain data is difficult to access in most real applications. In this study, we propose a novel CNN-based discriminative training framework as a domain compensatio n method to handle this issue. It uses a parallel CNN-based discriminator to learn a pair of high-level intermediate acoustic representations. Together with a binary discriminative loss, the discriminators are forced to maximally exploit the discrimination of heterogeneous acoustic information in each audio clip with target events, which results in a robust paired representations that can well discriminate the target events and background/domain variations separately. Moreover, to better learn the transient characteristics of target events, a frame-wise classifier is designed to perform the final classification. In addition, a two-stage training with the CNN-based discriminator initialization is further proposed to enhance the system training. All experiments are performed on the DCASE 2018 Task3 datasets. Results show that our proposal significantly outperforms the official baseline on cross-domain conditions in AUC by relative $1.8-12.1$% without any performance degradation on in-domain evaluation conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا