ترغب بنشر مسار تعليمي؟ اضغط هنا

SESQA: semi-supervised learning for speech quality assessment

378   0   0.0 ( 0 )
 نشر من قبل Joan Serr\\`a
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic speech quality assessment is an important, transversal task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen recording conditions, and a lack of flexibility of existing approaches. In this work, we tackle these problems with a semi-supervised learning approach, combining available annotations with programmatically generated data, and using 3 different optimization criteria together with 5 complementary auxiliary tasks. Our results show that such a semi-supervised approach can cut the error of existing methods by more than 36%, while providing additional benefits in terms of reusable features or auxiliary outputs. Improvement is further corroborated with an out-of-sample test showing promising generalization capabilities.

قيم البحث

اقرأ أيضاً

Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
Wav2vec-C introduces a novel representation learning technique combining elements from wav2vec 2.0 and VQ-VAE. Our model learns to reproduce quantized representations from partially masked speech encoding using a contrastive loss in a way similar to Wav2vec 2.0. However, the quantization process is regularized by an additional consistency network that learns to reconstruct the input features to the wav2vec 2.0 network from the quantized representations in a way similar to a VQ-VAE model. The proposed self-supervised model is trained on 10k hours of unlabeled data and subsequently used as the speech encoder in a RNN-T ASR model and fine-tuned with 1k hours of labeled data. This work is one of only a few studies of self-supervised learning on speech tasks with a large volume of real far-field labeled data. The Wav2vec-C encoded representations achieves, on average, twice the error reduction over baseline and a higher codebook utilization in comparison to wav2vec 2.0
Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In various application domains, including computer vision, natural language processing and audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features has proven to be a particularly relevant pretext task leading to building useful self-supervised representations that prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks, where each task targets a different group of features for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates properly calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on speaker recognition and automatic speech recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning.
This paper reports on the semi-supervised development of acoustic and language models for under-resourced, code-switched speech in five South African languages. Two approaches are considered. The first constructs four separate bilingual automatic spe ech recognisers (ASRs) corresponding to four different language pairs between which speakers switch frequently. The second uses a single, unified, five-lingual ASR system that represents all the languages (English, isiZulu, isiXhosa, Setswana and Sesotho). We evaluate the effectiveness of these two approaches when used to add additional data to our extremely sparse training sets. Results indicate that batch-wise semi-supervised training yields better results than a non-batch-wise approach. Furthermore, while the separate bilingual systems achieved better recognition performance than the unified system, they benefited more from pseudo-labels generated by the five-lingual system than from those generated by the bilingual systems.
Ensemble methods are generally regarded to be better than a single model if the base learners are deemed to be accurate and diverse. Here we investigate a semi-supervised ensemble learning strategy to produce generalizable blind image quality assessm ent models. We train a multi-head convolutional network for quality prediction by maximizing the accuracy of the ensemble (as well as the base learners) on labeled data, and the disagreement (i.e., diversity) among them on unlabeled data, both implemented by the fidelity loss. We conduct extensive experiments to demonstrate the advantages of employing unlabeled data for BIQA, especially in model generalization and failure identification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا