ترغب بنشر مسار تعليمي؟ اضغط هنا

CNN-based Discriminative Training for Domain Compensation in Acoustic Event Detection with Frame-wise Classifier

101   0   0.0 ( 0 )
 نشر من قبل Tiantian Tang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain mismatch is a noteworthy issue in acoustic event detection tasks, as the target domain data is difficult to access in most real applications. In this study, we propose a novel CNN-based discriminative training framework as a domain compensation method to handle this issue. It uses a parallel CNN-based discriminator to learn a pair of high-level intermediate acoustic representations. Together with a binary discriminative loss, the discriminators are forced to maximally exploit the discrimination of heterogeneous acoustic information in each audio clip with target events, which results in a robust paired representations that can well discriminate the target events and background/domain variations separately. Moreover, to better learn the transient characteristics of target events, a frame-wise classifier is designed to perform the final classification. In addition, a two-stage training with the CNN-based discriminator initialization is further proposed to enhance the system training. All experiments are performed on the DCASE 2018 Task3 datasets. Results show that our proposal significantly outperforms the official baseline on cross-domain conditions in AUC by relative $1.8-12.1$% without any performance degradation on in-domain evaluation conditions.



قيم البحث

اقرأ أيضاً

This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels fo r acoustic events are expensive to obtain, and relevant acoustic event audios can be limited, especially for rare events. In this paper we leverage an Internet-scale unlabeled dataset with potential domain shift to improve the detection of acoustic events. Based on the classic tri-training approach, our proposed method shows accuracy improvement over both the supervised training baseline, and semisupervised self-training set-up, in all pre-defined acoustic event detection tasks. As our approach relies on ensemble models, we further show the improvements can be distilled to a single model via knowledge distillation, with the resulting single student model maintaining high accuracy of teacher ensemble models.
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave rage pooling (GAP) layer to predict frame-level labels at inference time. This architecture is inspired by the work proposed by Zhou et al., a well-known framework using GAP to localize visual objects given image-level labels. While most of the previous works on weakly supervised AED used recurrent layers with attention-based mechanism to localize acoustic events, the proposed network directly localizes events using the feature map extracted by DenseNet without any recurrent layers. In the audio tagging task of DCASE 2017, our method significantly outperforms the state-of-the-art method in F1 score by 5.3% on the dev set, and 6.0% on the eval set in terms of absolute values. For weakly supervised AED task in DCASE 2018, our model outperforms the state-of-the-art method in event-based F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of absolute values, by using data augmentation and tri-training to leverage unlabeled data.
In this paper, we propose a discriminative video representation for event detection over a large scale video dataset when only limited hardware resources are available. The focus of this paper is to effectively leverage deep Convolutional Neural Netw orks (CNNs) to advance event detection, where only frame level static descriptors can be extracted by the existing CNN toolkit. This paper makes two contributions to the inference of CNN video representation. First, while average pooling and max pooling have long been the standard approaches to aggregating frame level static features, we show that performance can be significantly improved by taking advantage of an appropriate encoding method. Second, we propose using a set of latent concept descriptors as the frame descriptor, which enriches visual information while keeping it computationally affordable. The integration of the two contributions results in a new state-of-the-art performance in event detection over the largest video datasets. Compared to improved Dense Trajectories, which has been recognized as the best video representation for event detection, our new representation improves the Mean Average Precision (mAP) from 27.6% to 36.8% for the TRECVID MEDTest 14 dataset and from 34.0% to 44.6% for the TRECVID MEDTest 13 dataset. This work is the core part of the winning solution of our CMU-Informedia team in TRECVID MED 2014 competition.
In this paper, we present a compression approach based on the combination of low-rank matrix factorization and quantization training, to reduce complexity for neural network based acoustic event detection (AED) models. Our experimental results show t his combined compression approach is very effective. For a three-layer long short-term memory (LSTM) based AED model, the original model size can be reduced to 1% with negligible loss of accuracy. Our approach enables the feasibility of deploying AED for resource-constraint applications.
Conventional far-field automatic speech recognition (ASR) systems typically employ microphone array techniques for speech enhancement in order to improve robustness against noise or reverberation. However, such speech enhancement techniques do not al ways yield ASR accuracy improvement because the optimization criterion for speech enhancement is not directly relevant to the ASR objective. In this work, we develop new acoustic modeling techniques that optimize spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input based on an ASR criterion directly. In contrast to conventional methods, we incorporate array processing knowledge into the acoustic model. Moreover, we initialize the network with beamformers coefficients. We investigate effects of such MC neural networks through ASR experiments on the real-world far-field data where users are interacting with an ASR system in uncontrolled acoustic environments. We show that our MC acoustic model can reduce a word error rate (WER) by~16.5% compared to a single channel ASR system with the traditional log-mel filter bank energy (LFBE) feature on average. Our result also shows that our network with the spatial filtering layer on two-channel input achieves a relative WER reduction of~9.5% compared to conventional beamforming with seven microphones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا