ﻻ يوجد ملخص باللغة العربية
Reinforcement learning (RL) has gained increasing interest since the demonstration it was able to reach human performance on video game benchmarks using deep Q-learning (DQN). The current consensus for training neural networks on such complex environments is to rely on gradient-based optimization. Although alternative Bayesian deep learning methods exist, most of them still rely on gradient-based optimization, and they typically do not scale on benchmarks such as the Atari game environment. Moreover none of these approaches allow performing the analytical inference for the weights and biases defining the neural network. In this paper, we present how we can adapt the temporal difference Q-learning framework to make it compatible with the tractable approximate Gaussian inference (TAGI), which allows learning the parameters of a neural network using a closed-form analytical method. Throughout the experiments with on- and off-policy reinforcement learning approaches, we demonstrate that TAGI can reach a performance comparable to backpropagation-trained networks while using fewer hyperparameters, and without relying on gradient-based optimization.
With few exceptions, neural networks have been relying on backpropagation and gradient descent as the inference engine in order to learn the model parameters, because the closed-form Bayesian inference for neural networks has been considered to be in
Since its inception, deep learning has been overwhelmingly reliant on backpropagation and gradient-based optimization algorithms in order to learn weight and bias parameter values. Tractable Approximate Gaussian Inference (TAGI) algorithm was shown t
Deep learning models have demonstrated outstanding performance in several problems, but their training process tends to require immense amounts of computational and human resources for training and labeling, constraining the types of problems that ca
In this paper, we propose an analytical method for performing tractable approximate Gaussian inference (TAGI) in Bayesian neural networks. The method enables the analytical Gaussian inference of the posterior mean vector and diagonal covariance matri
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we s