ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam tests of a large-scale TORCH time-of-flight demonstrator

59   0   0.0 ( 0 )
 نشر من قبل Thomas Hancock
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TORCH time-of-flight detector is designed to provide particle identification in the momentum range 2-10 GeV/c over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a 10 mm thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of 70 ps, giving a timing precision of 15 ps per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area 53 $times$ 53mm$^2$ with a granularity of 8 $times$ 128 pixels equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions 660 $times$ 1250 $times$ 10 mm$^3$ and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented.

قيم البحث

اقرأ أيضاً

388 - S. Bhasin , T. Blake , N. Brook 2020
TORCH is a time-of-flight detector designed to perform particle identification over the momentum range 2$-$10 GeV/c for a 10 m flight path. The detector exploits prompt Cherenkov light produced by charged particles traversing a quartz plate of 10 mm thickness. Photons are then trapped by total internal reflection and directed onto a detector plane instrumented with customised position-sensitive Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT) detectors. A single-photon timing resolution of 70 ps is targeted to achieve the desired separation of pions and kaons, with an expectation of around 30 detected photons per track. Studies of the performance of a small-scale TORCH demonstrator with a radiator of dimensions 120 $times$ 350 $times$ 10 mm$^3$ have been performed in two test-beam campaigns during November 2017 and June 2018. Single-photon time resolutions ranging from 104.3 ps to 114.8 ps and 83.8 ps to 112.7 ps have been achieved for MCP-PMTs with granularity 4 $times$ 64 and 8 $times$ 64 pixels, respectively. Photon yields are measured to be within $sim$10% and $sim$30% of simulation, respectively. Finally, the outlook for future work with planned improvements is presented.
TORCH is a time-of-flight detector that is being developed for the Upgrade II of the LHCb experiment, with the aim of providing charged particle identification over the momentum range 2-10 GeV/c. A small-scale TORCH demonstrator with customised reado ut electronics has been operated successfully in beam tests at the CERN PS. Preliminary results indicate that a single-photon resolution better than 100 ps can be achieved.
86 - B. Aimard , Ch. Alt , J. Asaadi 2018
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and oers se veral advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of 3x1x1 $m^3$ has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillation and electroluminescence detection, and purity of the liquid argon from analyses of a collected sample of cosmic ray muons.
109 - Oleksandr Borysov 2017
LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of integrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multil ayer LumiCal prototype with four silicon detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Presented results are mainly focused on the transverse structure of the observed electromagnetic shower and the Moli`ere radius measurement. A comparison with MC simulation is also discussed.
95 - N. Harnew , S. Bhasin , T. Blake 2020
The TORCH time-of-flight detector will provide particle identification between 2-10 GeV/c momentum over a flight distance of 10 m, and is designed for large-area coverage, up to 30 m^2. A 15 ps time-of-flight resolution per incident particle is antic ipated by measuring the arrival times from Cherenkov photons produced in a synthetic fused silica radiator plate of 10 mm thickness. Customised Micro-Channel Plate Photomultiplier Tube (MCP-PMT) photon detectors of 53 x 53 mm^2 active area with a 64 x 64 granularity have been developed with industrial partners. Test-beam studies using both a small-scale TORCH demonstrator and a half-length TORCH module are presented. The desired timing resolution of 70 ps per single photon is close to being achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا