ترغب بنشر مسار تعليمي؟ اضغط هنا

TORCH: a large area time-of-flight detector for particle identification

70   0   0.0 ( 0 )
 نشر من قبل Neville Harnew
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TORCH is a time-of-flight detector that is being developed for the Upgrade II of the LHCb experiment, with the aim of providing charged particle identification over the momentum range 2-10 GeV/c. A small-scale TORCH demonstrator with customised readout electronics has been operated successfully in beam tests at the CERN PS. Preliminary results indicate that a single-photon resolution better than 100 ps can be achieved.



قيم البحث

اقرأ أيضاً

The TORCH time-of-flight detector is designed to provide particle identification in the momentum range 2-10 GeV/c over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a 10 mm thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of 70 ps, giving a timing precision of 15 ps per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area 53 $times$ 53mm$^2$ with a granularity of 8 $times$ 128 pixels equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions 660 $times$ 1250 $times$ 10 mm$^3$ and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented.
We present the design and characterization of a large-area Cryogenic PhotoDetector (CPD) designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a $45.6$ $mathrm{cm}^2$ surface area by 1-mm-thick $10.6$ $mathrm{g}$ Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors (QETs) with superconducting critical temperature $T_c=41.5$ $mathrm{mK}$ to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated $^{55}$Fe X-ray source incident on the center of the detector. The noise equivalent power is measured to be $1times 10^{-17}$ $mathrm{W}/sqrt{mathrm{Hz}}$ in a bandwidth of $2.7$ $mathrm{kHz}$. The baseline energy resolution is measured to be $sigma_E = 3.86 pm 0.04$ $(mathrm{stat.})^{+0.23}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$ (RMS). The detector also has an expected timing resolution of $sigma_t = 2.3$ $mumathrm{s}$ for $5$ $sigma_E$ events.
120 - R. Neilson , F. LePort , A. Pocar 2009
EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.
133 - M. Akatsu 1999
We describe here a new concept of a Cherenkov detector for particle identification by means of measuring the Time-of-Propagation (TOP) of Cherenkov photons.
388 - S. Bhasin , T. Blake , N. Brook 2020
TORCH is a time-of-flight detector designed to perform particle identification over the momentum range 2$-$10 GeV/c for a 10 m flight path. The detector exploits prompt Cherenkov light produced by charged particles traversing a quartz plate of 10 mm thickness. Photons are then trapped by total internal reflection and directed onto a detector plane instrumented with customised position-sensitive Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT) detectors. A single-photon timing resolution of 70 ps is targeted to achieve the desired separation of pions and kaons, with an expectation of around 30 detected photons per track. Studies of the performance of a small-scale TORCH demonstrator with a radiator of dimensions 120 $times$ 350 $times$ 10 mm$^3$ have been performed in two test-beam campaigns during November 2017 and June 2018. Single-photon time resolutions ranging from 104.3 ps to 114.8 ps and 83.8 ps to 112.7 ps have been achieved for MCP-PMTs with granularity 4 $times$ 64 and 8 $times$ 64 pixels, respectively. Photon yields are measured to be within $sim$10% and $sim$30% of simulation, respectively. Finally, the outlook for future work with planned improvements is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا