ﻻ يوجد ملخص باللغة العربية
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and oers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of 3x1x1 $m^3$ has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillation and electroluminescence detection, and purity of the liquid argon from analyses of a collected sample of cosmic ray muons.
Using truth-level Monte Carlo simulations of particle interactions in a large volume of liquid argon, we demonstrate physics capabilities enabled by reconstruction of topologically compact and isolated low-energy features, or `blips, in large liquid
We develop a novel approach for a Time Projection Chamber (TPC) concept suitable for deployment in kilotonne scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks w
Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow LArTPCs to operate in the high-multiplicity near detector environment of DUNE, a new charge readout
Large volume Liquid Argon Time Projection Chambers (LAr-TPC) are used and proposed for neutrino physics and rare event search. Most of these detectors make use of the scintillation light of liquid argon for trigger purposes. Two different approaches
A number of liquid argon time projection chambers (LAr TPCs) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can aff