ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Tests of a Multilayer LumiCal Prototype

110   0   0.0 ( 0 )
 نشر من قبل Oleksandr Borysov Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Oleksandr Borysov




اسأل ChatGPT حول البحث

LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of integrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multilayer LumiCal prototype with four silicon detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Presented results are mainly focused on the transverse structure of the observed electromagnetic shower and the Moli`ere radius measurement. A comparison with MC simulation is also discussed.

قيم البحث

اقرأ أيضاً

184 - Maryna Borysova 2021
The FCAL collaboration is preparing large-scale prototypes of special calorimeters to be used in the very forward region at future electron-positron colliders for a precise measurement of integrated luminosity and for instant luminosity measurement a nd assisting beam-tuning. LumiCal is designed as a silicon-tungsten sandwich calorimeter with very thin sensor planes to keep the Moli`ere radius small, facilitating such the measurement of electron showers in the presence of background. Dedicated front-end electronics has been developed to match the timing and dynamic range requirements. A partially instrumented prototype was investigated in a 1 to 5 GeV electron beam at the DESY II synchrotron. In the recent beam tests, a multi-plane compact prototype was equipped with thin detector planes fully assembled with readout electronics and installed in 1 mm gaps between tungsten plates of one radiation length thickness. High statistics data were used to perform sensor alignment, and to measure the longitudinal and transversal shower development in the sandwich. This talk covers the latest status of the calorimeter prototype development and selected performance results, obtained in test beam measurements, the prospects for the upcoming DESY test beam, as well as the expected simulation performance.
123 - O. Borysov , V. Ghenescu , A. Levy 2016
A prototype of a luminometer, designed for a future e+e- collider detector, was tested in the CERN PS accelerator T9 testbeam. The objective of this test beam was to demonstrate a multi-plane operation, to study the development of the electromagnetic shower and to compare it with MC simulations.
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4{pi} coverage for neutrino interactions at the near detector a nd will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10x10x10 mm^3, providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920x560x1840 mm^3 volume. A prototype made of 24x8x48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
A new design of a detector plane of sub-millimetre thickness for an electromagnetic sampling calorimeter is presented. It is intended to be used in the luminometers LumiCal and BeamCal in future linear $e^+e^-$ collider experiments. The detector plan es were produced utilising novel connectivity scheme technologies. They were installed in a compact prototype of the calorimeter and tested at DESY with an electron beam of energy 1-5 GeV. The performance of a prototype of a compact LumiCal comprising eight detector planes was studied. The effective Moli`ere radius at 5 GeV was determined to be (8.1 +/- 0.1 (stat) +/- 0.3 (syst)) mm, a value well reproduced by the Monte Carlo (MC) simulation (8.4 +/- 0.1) mm. The dependence of the effective Moli`ere radius on the electron energy in the range 1-5 GeV was also studied. Good agreement was obtained between data and MC simulation.
The TORCH time-of-flight detector is designed to provide particle identification in the momentum range 2-10 GeV/c over large areas. The detector exploits prompt Cherenkov light produced by charged particles traversing a 10 mm thick quartz plate. The photons propagate via total internal reflection and are focused onto a detector plane comprising position-sensitive Micro-Channel Plate Photo-Multiplier Tubes (MCP-PMT) detectors. The goal is to achieve a single-photon timing resolution of 70 ps, giving a timing precision of 15 ps per charged particle by combining the information from around 30 detected photons. The MCP-PMT detectors have been developed with a commercial partner (Photek Ltd, UK), leading to the delivery of a square tube of active area 53 $times$ 53mm$^2$ with a granularity of 8 $times$ 128 pixels equivalent. A large-scale demonstrator of TORCH, having a quartz plate of dimensions 660 $times$ 1250 $times$ 10 mm$^3$ and read out by a pair of MCP-PMTs with custom readout electronics, has been verified in a test beam campaign at the CERN PS. Preliminary results indicate that the required performance is close to being achieved. The anticipated performance of a full-scale TORCH detector at the LHCb experiment is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا