ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Primal-Dual Algorithms with Faster Convergence than $O(1/sqrt{T})$ for Problems without Bilinear Structure

87   0   0.0 ( 0 )
 نشر من قبل Yan Yan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies on stochastic primal-dual algorithms for solving min-max problems with faster convergence heavily rely on the bilinear structure of the problem, which restricts their applicability to a narrowed range of problems. The main contribution of this paper is the design and analysis of new stochastic primal-dual algorithms that use a mixture of stochastic gradient updates and a logarithmic number of deterministic dual updates for solving a family of convex-concave problems with no bilinear structure assumed. Faster convergence rates than $O(1/sqrt{T})$ with $T$ being the number of stochastic gradient updates are established under some mild conditions of involved functions on the primal and the dual variable. For example, for a family of problems that enjoy a weak strong convexity in terms of the primal variable and has a strongly concave function of the dual variable, the convergence rate of the proposed algorithm is $O(1/T)$. We also investigate the effectiveness of the proposed algorithms for learning robust models and empirical AUC maximization.



قيم البحث

اقرأ أيضاً

Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from loc al minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both.
We propose a variant of the Frank-Wolfe algorithm for solving a class of sparse/low-rank optimization problems. Our formulation includes Elastic Net, regularized SVMs and phase retrieval as special cases. The proposed Primal-Dual Block Frank-Wolfe al gorithm reduces the per-iteration cost while maintaining linear convergence rate. The per iteration cost of our method depends on the structural complexity of the solution (i.e. sparsity/low-rank) instead of the ambient dimension. We empirically show that our algorithm outperforms the state-of-the-art methods on (multi-class) classification tasks.
Bilevel optimization has been widely applied in many important machine learning applications such as hyperparameter optimization and meta-learning. Recently, several momentum-based algorithms have been proposed to solve bilevel optimization problems faster. However, those momentum-based algorithms do not achieve provably better computational complexity than $mathcal{O}(epsilon^{-2})$ of the SGD-based algorithm. In this paper, we propose two new algorithms for bilevel optimization, where the first algorithm adopts momentum-based recursive iterations, and the second algorithm adopts recursive gradient estimations in nested loops to decrease the variance. We show that both algorithms achieve the complexity of $mathcal{O}(epsilon^{-1.5})$, which outperforms all existing algorithms by the order of magnitude. Our experiments validate our theoretical results and demonstrate the superior empirical performance of our algorithms in hyperparameter applications. Our codes for MRBO, VRBO and other benchmarks are available $text{online}^1$.
80 - C^ome Hure 2018
This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate dynamic programming approaches, we first approximate the optimal policy by means of neural ne tworks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the dynamic programming recursion by performance or hybrid iteration, and regress now methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks, and of the statistical error when estimating network function, leaving aside the optimization error. Numerical results on various applications are presented in a companion paper (arxiv.org/abs/1812.05916) and illustrate the performance of the proposed algorithms.
We propose an algorithm-independent framework to equip existing optimization methods with primal-dual certificates. Such certificates and corresponding rate of convergence guarantees are important for practitioners to diagnose progress, in particular in machine learning applications. We obtain new primal-dual convergence rates, e.g., for the Lasso as well as many L1, Elastic Net, group Lasso and TV-regularized problems. The theory applies to any norm-regularized generalized linear model. Our approach provides efficiently computable duality gaps which are globally defined, without modifying the original problems in the region of interest.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا