ترغب بنشر مسار تعليمي؟ اضغط هنا

Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence

175   0   0.0 ( 0 )
 نشر من قبل Francis Bach
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both.

قيم البحث

اقرأ أيضاً

We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average app roach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.
Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback -Leibler divergence, and depends on a parameter that is called its order. In particular, the Renyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Renyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
299 - Taisuke Kobayashi 2021
This paper addresses a new interpretation of reinforcement learning (RL) as reverse Kullback-Leibler (KL) divergence optimization, and derives a new optimization method using forward KL divergence. Although RL originally aims to maximize return indir ectly through optimization of policy, the recent work by Levine has proposed a different derivation process with explicit consideration of optimality as stochastic variable. This paper follows this concept and formulates the traditional learning laws for both value function and policy as the optimization problems with reverse KL divergence including optimality. Focusing on the asymmetry of KL divergence, the new optimization problems with forward KL divergence are derived. Remarkably, such new optimization problems can be regarded as optimistic RL. That optimism is intuitively specified by a hyperparameter converted from an uncertainty parameter. In addition, it can be enhanced when it is integrated with prioritized experience replay and eligibility traces, both of which accelerate learning. The effects of this expected optimism was investigated through learning tendencies on numerical simulations using Pybullet. As a result, moderate optimism accelerated learning and yielded higher rewards. In a realistic robotic simulation, the proposed method with the moderate optimism outperformed one of the state-of-the-art RL method.
102 - Moses Charikar , Lunjia Hu 2021
In the non-negative matrix factorization (NMF) problem, the input is an $mtimes n$ matrix $M$ with non-negative entries and the goal is to factorize it as $Mapprox AW$. The $mtimes k$ matrix $A$ and the $ktimes n$ matrix $W$ are both constrained to h ave non-negative entries. This is in contrast to singular value decomposition, where the matrices $A$ and $W$ can have negative entries but must satisfy the orthogonality constraint: the columns of $A$ are orthogonal and the rows of $W$ are also orthogonal. The orthogonal non-negative matrix factorization (ONMF) problem imposes both the non-negativity and the orthogonality constraints, and previous work showed that it leads to better performances than NMF on many clustering tasks. We give the first constant-factor approximation algorithm for ONMF when one or both of $A$ and $W$ are subject to the orthogonality constraint. We also show an interesting connection to the correlation clustering problem on bipartite graphs. Our experiments on synthetic and real-world data show that our algorithm achieves similar or smaller errors compared to previous ONMF algorithms while ensuring perfect orthogonality (many previous algorithms do not satisfy the hard orthogonality constraint).
Bayesian nonparametric statistics is an area of considerable research interest. While recently there has been an extensive concentration in developing Bayesian nonparametric procedures for model checking, the use of the Dirichlet process, in its simp lest form, along with the Kullback-Leibler divergence is still an open problem. This is mainly attributed to the discreteness property of the Dirichlet process and that the Kullback-Leibler divergence between any discrete distribution and any continuous distribution is infinity. The approach proposed in this paper, which is based on incorporating the Dirichlet process, the Kullback-Leibler divergence and the relative belief ratio, is considered the first concrete solution to this issue. Applying the approach is simple and does not require obtaining a closed form of the relative belief ratio. A Monte Carlo study and real data examples show that the developed approach exhibits excellent performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا