ترغب بنشر مسار تعليمي؟ اضغط هنا

Landau theory of restart transitions

118   0   0.0 ( 0 )
 نشر من قبل V V Prasad
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a Landau like theory to characterize the phase transitions in resetting systems. Restart can either accelerate or hinder the completion of a first passage process. The transition between these two phases is characterized by the behavioral change in the order parameter of the system namely the optimal restart rate. Like in the original theory of Landau, the optimal restart rate can undergo a first or second order transition depending on the details of the system. Nonetheless, there exists no unified framework which can capture the onset of such novel phenomena. We unravel this in a comprehensive manner and show how the transition can be understood by analyzing the first passage time moments. Power of our approach is demonstrated in two canonical paradigm setup namely the Michaelis Menten chemical reaction and diffusion under restart.

قيم البحث

اقرأ أيضاً

This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
125 - V.L. Pokrovsky , S. Scheidl 2003
We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their two-time correlation functions, which describe the response of this two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are derived. Although fluctuations are of the same order of magnitude as averages, the results is obtained in an analytic form.
We investigate a perturbatively renormalizable $S_{q}$ invariant model with $N=q-1$ scalar field components below the upper critical dimension $d_c=frac{10}{3}$. Our results hint at the existence of multicritical generalizations of the critical model s of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the $(d,q)$ diagram of the Potts model.
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
A quantum many-body system whose dynamics includes local measurements at a nonzero rate can be in distinct dynamical phases, with differing entanglement properties. We introduce theoretical approaches to measurement-induced phase transitions (MPT) an d also to entanglement transitions in random tensor networks. Many of our results are for all-to-all quantum circuits with unitaries and measurements, in which any qubit can couple to any other, and related settings where some of the complications of low-dimensional models are reduced. We also propose field theory descriptions for spatially local systems of any finite dimensionality. To build intuition, we first solve the simplest minimal cut toy model for entanglement dynamics in all-to-all circuits, finding scaling forms and exponents within this approximation. We then show that certain all-to-all measurement circuits allow exact results by exploiting local tree-like structure in the circuit geometry. For this reason, we make a detour to give general universal results for entanglement phase transitions random tree tensor networks, making a connection with classical directed polymers on a tree. We then compare these results with numerics in all-to-all circuits, both for the MPT and for the simpler Forced Measurement Phase Transition (FMPT). We characterize the two different phases in all-to-all circuits using observables sensitive to the amount of information propagated between initial and final time. We demonstrate signatures of the two phases that can be understood from simple models. Finally we propose Landau-Ginsburg-Wilson-like field theories for the MPT, the FMPT, and entanglement transitions in random tensor networks. This analysis shows a surprising difference between the MPT and the other cases. We discuss measurement dynamics with additional structure (e.g. free-fermion structure), and questions for the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا