ﻻ يوجد ملخص باللغة العربية
We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their two-time correlation functions, which describe the response of this two-level system to a weak external pulse signal. The spectrum and intensity of the magnetic response are derived. Although fluctuations are of the same order of magnitude as averages, the results is obtained in an analytic form.
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude
Quantum systems are prone to decoherence due to both intrinsic interactions as well as random fluctuations from the environment. Using the Pechukas-Yukawa formalism, we investigate the influence of noise on the dynamics of an adiabatically evolving H
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulat
The spin-dependent electron transport has been studied in magnetic semiconductor waveguides (nanowires) in the helical magnetic field. We have shown that -- apart from the known conductance dip located at the magnetic field equal to the helical-field
A two-level system traversing a level anticrossing has a small probability to make a so-called Landau-Zener (LZ) transition between its energy bands, in deviation from simple adiabatic evolution. This effect takes on renewed relevance due to the obse