ﻻ يوجد ملخص باللغة العربية
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
Notes of the lectures delivered in Les Houches during the Summer School on Complex Systems (July 2006).
We develop a Landau like theory to characterize the phase transitions in resetting systems. Restart can either accelerate or hinder the completion of a first passage process. The transition between these two phases is characterized by the behavioral
In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids (e.g. spinodal decomp
The phase diagram of the quantum spin-1/2 antiferromagnetic $J^{,}_{1}$-$J^{,}_{2}$ XXZ chain was obtained by Haldane using bosonization techniques. It supports three distinct phases for $0leq J^{,}_{2}/J^{,}_{1}<1/2$, i.e., a gapless algebraic spin
Discontinuous phase transitions out of equilibrium can be characterized by the behavior of macroscopic stochastic currents. But while much is known about the the average current, the situation is much less understood for higher statistics. In this pa