ﻻ يوجد ملخص باللغة العربية
We examine how systems in non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
Modern methods for sampling rugged landscapes in state space mainly rely on knowledge of the relative probabilities of microstates, which is given by the Boltzmann factor for equilibrium systems. In principle, trajectory reweighting provides an elega
We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NES
While studying systems driven out of equilibrium, one usually employs a drive that is not directly coupled to the degrees of freedom of the system. In contrast to such a case, we here unveil a hitherto unexplored situation of state-dependent driving,
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a st
We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible tran