ﻻ يوجد ملخص باللغة العربية
We consider $ell_1$-Rank-$r$ Approximation over GF(2), where for a binary $mtimes n$ matrix ${bf A}$ and a positive integer $r$, one seeks a binary matrix ${bf B}$ of rank at most $r$, minimizing the column-sum norm $||{bf A} -{bf B}||_1$. We show that for every $varepsilonin (0, 1)$, there is a randomized $(1+varepsilon)$-approximation algorithm for $ell_1$-Rank-$r$ Approximation over GF(2) of running time $m^{O(1)}n^{O(2^{4r}cdot varepsilon^{-4})}$. This is the first polynomial time approximation scheme (PTAS) for this problem.
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t
Various problems in data analysis and statistical genetics call for recovery of a column-sparse, low-rank matrix from noisy observations. We propose ReFACTor, a simple variation of the classical Truncated Singular Value Decomposition (TSVD) algorithm
A number of recent works have studied algorithms for entrywise $ell_p$-low rank approximation, namely, algorithms which given an $n times d$ matrix $A$ (with $n geq d$), output a rank-$k$ matrix $B$ minimizing $|A-B|_p^p=sum_{i,j}|A_{i,j}-B_{i,j}|^p$
In applications such as natural language processing or computer vision, one is given a large $n times d$ matrix $A = (a_{i,j})$ and would like to compute a matrix decomposition, e.g., a low rank approximation, of a function $f(A) = (f(a_{i,j}))$ appl