ﻻ يوجد ملخص باللغة العربية
Spin-ices are frustrated magnets that support a particularly rich variety of emergent physics. Typically, it is the interplay of magnetic dipole interactions, spin anisotropy, and geometric frustration on the pyrochlore lattice that drives spin-ice formation. The relevant physics occurs at temperatures commensurate with the magnetic interaction strength, which for most systems is 1--5,K. This low energy scale poses severe challenges for experimental studies of spin-ices and the practical exploitation of their unusual properties. Here, we show that non-magnetic cadmium cyanide (Cd(CN)$_2$) exhibits analogous behaviour to magnetic spin-ices, but does so on a temperature scale that is nearly two orders of magnitude greater. The electric dipole moments of cyanide ions in Cd(CN)$_2$ assume the role of magnetic pseudospins, with the difference in energy scale reflecting the increased strength of electric emph{vs} magnetic dipolar interactions. As a result, spin-ice physics influences the structural behaviour of Cd(CN)$_2$ even at room temperature.
Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conducti
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives
Alternating layers of granular Iron (Fe) and Titanium dioxide (TiO$_{2-delta}$) were deposited on (100) Lanthanum aluminate (LaAlO$_3$) substrates in low oxygen chamber pressure using a controlled pulsed laser ablation deposition technique. The total
We investigate carrier transport in a single 22 nm-thick double-gated Si quantum well device, which has independent contacts to electrons and holes. Conductance, Hall density and Hall mobility are mapped in a broad double-gate voltage window. When th
The low temperature magnetic properties of pyrochlore compound Dy2Ti2O7 in magnetic fields applied along the [111] direction are reported. Below 1 K, a clear plateau has been observed in the magnetization process in the field range 2~9 kOe, followed