ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrons and holes in Si quantum well: a room-temperature transport and drag resistance study

71   0   0.0 ( 0 )
 نشر من قبل Mika Prunnila
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate carrier transport in a single 22 nm-thick double-gated Si quantum well device, which has independent contacts to electrons and holes. Conductance, Hall density and Hall mobility are mapped in a broad double-gate voltage window. When the gate voltage asymmetry is not too large only either electrons or holes occupy the Si well and the Hall mobility shows the fingerprints of volume inversion/accumulation. At strongly asymmetric double-gate voltage an electric field induced electron-hole (EH) bi-layer is formed inside the well. The EH drag resistance R_{he} is explored at balanced carrier densities: R_{he} decreases monotonically from 860 to 37 Ohms when the electron and hole density is varied between ~0.4-1.7x10^{16} m^{-2}.

قيم البحث

اقرأ أيضاً

69 - Tomoyuki Sasaki 2014
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However , RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in non-degenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observed the modulation of the Hanle-type spin precession signals, which is a characteristic spin dynamics in non-degenerate semiconductor. We obtained long spin transport of more than 20 {mu}m and spin rotation, greater than 4{pi} at RT. We also observed gate-induced modulation of spin transport signals at RT. The modulation of spin diffusion length as a function of a gate voltage was successfully observed, which we attributed to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to make avenues to create of practical Si-based spin MOSFETs.
We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 10$^{6}$ A/cm$^{2}$. This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions.
Spin-ices are frustrated magnets that support a particularly rich variety of emergent physics. Typically, it is the interplay of magnetic dipole interactions, spin anisotropy, and geometric frustration on the pyrochlore lattice that drives spin-ice f ormation. The relevant physics occurs at temperatures commensurate with the magnetic interaction strength, which for most systems is 1--5,K. This low energy scale poses severe challenges for experimental studies of spin-ices and the practical exploitation of their unusual properties. Here, we show that non-magnetic cadmium cyanide (Cd(CN)$_2$) exhibits analogous behaviour to magnetic spin-ices, but does so on a temperature scale that is nearly two orders of magnitude greater. The electric dipole moments of cyanide ions in Cd(CN)$_2$ assume the role of magnetic pseudospins, with the difference in energy scale reflecting the increased strength of electric emph{vs} magnetic dipolar interactions. As a result, spin-ice physics influences the structural behaviour of Cd(CN)$_2$ even at room temperature.
117 - Baowen Li , Lei Wang , 2004
We report on the first model of a thermal transistor to control heat flow. Like its electronic counterpart, our thermal transistor is a three-terminal device with the important feature that the current through the two terminals can be controlled by s mall changes in the temperature or in the current through the third terminal. This control feature allows us to switch the device between off (insulating) and on (conducting) states or to amplify a small current. The thermal transistor model is possible because of the negative differential thermal resistance.
We have studied ferroelectricity and photovoltaic effects in atomic layer deposited (ALD) 40-nm thick SnTiO$_{x}$ films deposited directly onto p-type (001)Si substrate. These films showed well-saturated, square and repeatable hysteresis loops with r emnant polarization of 1.5 $mu$C/cm$^{2}$ at room temperature, as detected by out-of-plane polarization versus electric field (P-E) and field cycling measurements. A photo-induced enhancement in ferroelectricity was also observed as the spontaneous polarization increased under white-light illumination. The ferroelectricity exhibits relaxor characteristics with dielectric peak shifting from ca. T = 600 K at f = 1 MHz to ca. 500 K at 100 Hz. Moreover, our films showed ferroelectric photovoltaic behavior under the illumination of a wide spectrum of light, from visible to ultraviolet regions. A combination of experiment and theoretical calculation provided optical band gap of SnTiO$_{x}$ films which lies in the visible range of white light spectra. Our study leads a way to develop green ferroelectric SnTiO$_{x}$ thin films, which are compatible to semiconducting processes, and can be used for various ferroelectric and dielectric applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا