ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite

71   0   0.0 ( 0 )
 نشر من قبل Yo Machida
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin-a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.

قيم البحث

اقرأ أيضاً

The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound aries. Phonon scattering due to sample borders and grain boundaries is shown to result in a $T^{alpha}$-behaviour in the thermal conductivity where $alpha$ varies between 1 and 2. This behaviour is found to be more pronounced for nanosized grain boundaries. PACS: 65.80.Ck, 81.05.ue, 73.43.Cd
Motivated by recent experimental findings, we study the contribution of a quantum critical optical phonon branch to the thermal conductivity of a paraelectric system. We consider the proximity of the optical phonon branch to transverse acoustic phono n branch and calculate its contribution to the thermal conductivity within the Kubo formalism. We find a low temperature power law dependence of the thermal conductivity as $T^{alpha}$, with $1 < alpha < 2$, (lower than $T^3$ behavior) due to optical phonons near the quantum critical point. This result is in accord with the experimental findings and indicates the importance of quantum fluctuations in the thermal conduction in these materials.
Thermal switching provides an effective way for active heat flow control, which has recently attracted increasing attention in terms of nanoscale thermal management technologies. In magnetic and spintronic materials, the thermal conductivity depends on the magnetization configuration: this is the magneto-thermal resistance effect. Here we show that an epitaxial Cu/Co$_{50}$Fe$_{50}$ multilayer film exhibits giant magnetic-field-induced modulation of the cross-plane thermal conductivity. The magneto-thermal resistance ratio for the Cu/Co$_{50}$Fe$_{50}$ multilayer reaches 150% at room temperature, which is much larger than the previous record high. Although the ratio decreases with increasing the temperature, the giant magneto-thermal resistance effect of ~100% still appears up to 400 K. The magnetic field dependence of the thermal conductivity of the Cu/Co$_{50}$Fe$_{50}$ multilayer was observed to be about twice greater than that of the cross-plane electrical conductivity. The observation of the giant magneto-thermal resistance effect clarifies a potential of spintronic multilayers as thermal switching devices.
In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport has spanned over half a century but has been mostly limit ed to cryogenic temperatures (~1 K) and more recently to low-dimensional materials. Here, we identify graphite as a three-dimensional material that supports phonon hydrodynamics at significantly higher temperatures (~100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal the microscopic origin of these intriguing phenomena in terms of the dependence of the effective boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions. As a boundary-sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal management and energy conversion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا