ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical excitation of propagating magnetostatic waves in an epitaxial Galfenol film by an ultrafast magnetic anisotropy change

62   0   0.0 ( 0 )
 نشر من قبل Nikolai Khokhlov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a time-resolved optically-pumped scanning optical microscopy technique we demonstrate the laser-driven excitation and propagation of spin waves in a 20-nm film of a ferromagnetic metallic alloy Galfenol epitaxially grown on a GaAs substrate. In contrast to previous all-optical studies of spin waves we employ laser-induced thermal changes of magnetocrystalline anisotropy as an excitation mechanism. A tightly focused 70-fs laser pulse excites packets of magnetostatic surface waves with a $e^{-1}$ propagation length of 3.4 $mu$m, which is comparable with that of permalloy. As a result, laser-driven magnetostatic spin waves are clearly detectable at distances up to 10 $mu$m, which promotes epitaxial Galfenol films to the limited family of materials suitable for magnonic devices. A pronounced in-plane magnetocrystalline anisotropy of the Galfenol film offers an additional degree of freedom for manipulating the spin waves parameters. Reorientation of an in-plane external magnetic field relative to the crystallographic axes of the sample tunes the frequency, amplitude and propagation length of the excited waves.

قيم البحث

اقرأ أيضاً

A central prospect of antiferromagnetic spintronics is to exploit magnetic properties that are unavailable with ferromagnets. However, this poses the challenge of accessing such properties for readout and control. To this end, light-induced manipulat ion of the transient ground state, e.g. by changing the magnetic anisotropy potential, opens promising pathways towards ultrafast deterministic control of antiferromagnetism. Here, we use this approach to trigger a $it{coherent}$ rotation of the entire long-range antiferromagnetic spin arrangement about a crystalline axis in $GdRh_2Si_2$ and demonstrate $it{deterministic}$ control of this rotation upon ultrafast optical excitation. Our observations can be explained by a displacive excitation of the Gd spins$$ local anisotropy potential by the optical excitation, allowing for a full description of this transient magnetic anisotropy potential.
The ultrafast dynamics of surface electromagnetic waves photogenerated on aluminum film perforated with subwavelength holes array was studied in the visible spectral range by the technique of transient photomodulation with 100 fs time resolution. We observed a pronounced blueshift of the resonant transmission band that reveals the important role of plasma attenuation in the optical response of nanohole arrays. The blueshift is inconsistent with plasmonic mechanism of extraordinary transmission and points to the crucial role of interference in the formation of transmission bands. The transient photomodulation spectra were successfully modeled within the Boltzmann equation approach for the electron-phonon relaxation dynamics, involving non-equilibrium hot electrons and quasi-equilibrium phonons.
Femtosecond time-resolved x-ray diffraction is employed to study the dynamics of the periodic lattice distortion (PLD) associated with the charge-density-wave (CDW) in K0.3MoO3. Using a multi-pulse scheme we show the ability to extend the lifetime of coherent oscillations of the PLD about the undistorted structure through re-excitation of the electronic states. This suggests that it is possible to enter a regime where the symmetry of the potential energy landscape corresponds to the high symmetry phase but the scattering pathways that lead to the damping of coherent dynamics are still controllable by altering the electronic state population. The demonstrated control over the coherence time offers new routes for manipulation of coherent lattice states.
Refined infrared magnetotransmission experiments have been performed in magnetic fields B up to 35 T on a series of multilayer epitaxial graphene samples. Following the main optical transition involving the n=0 Landau level (LL), we observe a new abs orption transition increasing in intensity with magnetic fields B>26 T. Our analysis shows that this is a signature of the breaking of the SU(4) symmetry of the n=0 LL. Using a quantitative model, we show that the only symmetry-breaking scheme consistent with our experiments is a charge density wave (CDW).
The pivotal role of magnetic anisotropy in stabilising two-dimensional (2D) magnetism has been widely accepted, however, direct correlation between magnetic anisotropy and long-range magnetic ordering in the 2D limit is yet to be explored. Here, usin g angle- and temperature-dependent tunnelling magnetoresistance, we report unprecedented metamagnetic phase transitions in atomically-thin CrOCl, triggered by magnetic easy-axis flipping instead of the conventional spin flop mechanism. Few-layer CrOCl tunnelling devices of various thicknesses consistently show an in-plane antiferromagnetic (AFM) ground state with the easy axis aligned along the Cr-O-Cr direction (b-axis). Strikingly, with the presence of a magnetic field perpendicular to the easy-axis (H||c), magnetization of CrOCl does not follow the prevalent spin rotation and saturation pattern, but rather exhibits an easy-axis flipping from the in-plane to out-of-plane directions. Such magnetic anisotropy controlled metamagnetic phase transitions are manifested by a drastic upturn in tun- nelling current, which shows anomalous shifts towards higher H when temperature increases. By 2D mapping of tunnelling currents as a function of both temperature and H, we determine a unique ferrimagnetic state with a superstructure periodicity of five unit cells after the field-induced metam- agnetic transitions. The feasibility to control 2D magnetism by manipulating magnetic anisotropy may open enormous opportunities in spin-based device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا