ترغب بنشر مسار تعليمي؟ اضغط هنا

SU(4) symmetry breaking revealed by magneto-optical spectroscopy in epitaxial graphene

93   0   0.0 ( 0 )
 نشر من قبل Liang Zheng Tan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Refined infrared magnetotransmission experiments have been performed in magnetic fields B up to 35 T on a series of multilayer epitaxial graphene samples. Following the main optical transition involving the n=0 Landau level (LL), we observe a new absorption transition increasing in intensity with magnetic fields B>26 T. Our analysis shows that this is a signature of the breaking of the SU(4) symmetry of the n=0 LL. Using a quantitative model, we show that the only symmetry-breaking scheme consistent with our experiments is a charge density wave (CDW).

قيم البحث

اقرأ أيضاً

127 - Y. Jiang , Z. Lu , J. Gigliotti 2019
Circular polarization resolved magneto-infrared studies of multilayer epitaxial graphene (MEG) are performed using tunable quantum cascade lasers in high magnetic fields up to 17.5 T. Landau level (LL) transitions in the monolayer and bilayer graphen e inclusions of MEG are resolved, and considerable electron-hole asymmetry is observed in the extracted electronic band structure. For monolayer graphene, a four-fold splitting of the $n=0$ to $n=1$ LL transition is evidenced and attributed to the lifting of the valley and spin degeneracy of the zeroth LL and the broken electron-hole symmetry. The magnetic field dependence of the splitting further reveals its possible mechanisms. The best fit to experimental data yields effective $g$-factors, $g^*_{VS}=6.7$ and $g^*_{ZS}=4.8$, for the valley and Zeeman splitting, respectively.
We study symmetry-broken phases in twisted bilayer graphene at small filling above charge neutrality and at Van Hove filling. We argue that the Landau functionals for the particle-hole order parameters at these fillings both have an approximate SU(4) symmetry, but differ in the sign of quartic terms. We determine the order parameter manifold of the ground state and analyze its excitations. For small fillings, we find a strong 1st-order transition to an SU(3)$otimes$U(1) manifold of orders that break spin-valley symmetry and induce a 3-1 splitting of fermionic excitations. For Van Hove filling, we find a weak 1st-order transition to an SO(4)$otimes$U(1) manifold of orders that preserves the two-fold band degeneracy. We discuss the effect of particle-hole orders on superconductivity and compare with strong-coupling approaches.
We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the heavy electron coherence, as the temperature decreases from $sim$120 K ($T^dagger$) to $sim$55 K ($T^*$ ). We reveal that the observed anomalous phonon softening and damping reduction below $T^*$ are directly associated with opening of an indirect hybridization gap. We also discover a distinct collective mode with an energy of $sim$8 meV, which may be the experimental evidence of the predicted unconventional density wave. Our observations provide critical informations for understanding the hybridization dynamics in heavy fermion materials.
We study the role of electronic spin and valley symmetry in the quantum interference (QI) patterns of the transmission function in graphene quantum junctions. In particular, we link it to the position of the destructive QI anti-resonances. When the s pin or valley symmetry is preserved, electrons with opposite spin or valley display the same interference pattern. On the other hand, when a symmetry is lifted the anti-resonances are split, with a consequent dramatic differentiation of the transport properties in the respective channel. We demonstrate rigorously this link in terms of the analytical structure of the electronic Green function which follows from the symmetries of the microscopic model and we confirm the result with numerical calculations for graphene nanoflakes. We argue that this is a generic and robust feature that can be exploited in different ways for the realization of nanoelectronic QI devices, generalizing the recent proposal of a QI-assisted spin-filtering effect [A. Valli et al. Nano Lett. 18, 2158 (2018)].
475 - M. Nakajima , T. Liang , S. Ishida 2011
An ordered phase showing remarkable electronic anisotropy in proximity to the superconducting phase is now a hot issue in the field of high-transition-temperature superconductivity. As in the case of copper oxides, superconductivity in iron arsenides competes or coexists with such an ordered phase. Undoped and underdoped iron arsenides have a magnetostructural ordered phase exhibiting stripe-like antiferromagnetic spin order accompanied by an orthorhombic lattice distortion; both the spin order and lattice distortion break the tetragonal symmetry of crystals of these compounds. In this ordered state, anisotropy of in-plane electrical resistivity is anomalous and difficult to attribute simply to the spin order and/or the lattice distortion. Here, we present the anisotropic optical spectra measured on detwinned BaFe2As2 crystals with light polarization parallel to the Fe planes. Pronounced anisotropy is observed in the spectra, persisting up to an unexpectedly high photon energy of about 2 eV. Such anisotropy arises from an anisotropic energy gap opening below and slightly above the onset of the order. Detailed analysis of the optical spectra reveals an unprecedented electronic state in the ordered phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا