ﻻ يوجد ملخص باللغة العربية
The pivotal role of magnetic anisotropy in stabilising two-dimensional (2D) magnetism has been widely accepted, however, direct correlation between magnetic anisotropy and long-range magnetic ordering in the 2D limit is yet to be explored. Here, using angle- and temperature-dependent tunnelling magnetoresistance, we report unprecedented metamagnetic phase transitions in atomically-thin CrOCl, triggered by magnetic easy-axis flipping instead of the conventional spin flop mechanism. Few-layer CrOCl tunnelling devices of various thicknesses consistently show an in-plane antiferromagnetic (AFM) ground state with the easy axis aligned along the Cr-O-Cr direction (b-axis). Strikingly, with the presence of a magnetic field perpendicular to the easy-axis (H||c), magnetization of CrOCl does not follow the prevalent spin rotation and saturation pattern, but rather exhibits an easy-axis flipping from the in-plane to out-of-plane directions. Such magnetic anisotropy controlled metamagnetic phase transitions are manifested by a drastic upturn in tun- nelling current, which shows anomalous shifts towards higher H when temperature increases. By 2D mapping of tunnelling currents as a function of both temperature and H, we determine a unique ferrimagnetic state with a superstructure periodicity of five unit cells after the field-induced metam- agnetic transitions. The feasibility to control 2D magnetism by manipulating magnetic anisotropy may open enormous opportunities in spin-based device applications.
We present a study of the magnetocaloric effect in La5/8-yPryCa3/8MnO3 (y=0.3) and Pr0.5Ca0.09Sr0.41MnO3 manganites. The low temperature state of both ystems is the result of a competition between the antiferromagnetic and ferromagnetic phases. The s
Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a Charge Density Wave (CDW), is the only ex
Electrical resistivity ($rho$), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd$_{2}$PdSi$_3$, crystallizing in an AlB$_2$-derived hexagonal structure are reported. The well-defined minimum in
Achieving control over magnon spin currents in insulating magnets - where dissipation due to Joule heating is highly suppressed - is an active area of research that could lead to energy-efficient spintronics applications. However, magnon spin current
Topological spin textures in an itinerant ferromagnet, SrRuO$_3$ is studied combining Hall transport measurements and numerical simulations. We observe characteristic signatures of the Topological Hall Effect associated with skyrmions. A relatively l