ﻻ يوجد ملخص باللغة العربية
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for superconductivity. Here, we investigate the normal transport of superconducting FeSe$_{1-x}$S$_x$ across a nematic phase transition using high magnetic fields up to 69 T to establish the temperature and field-dependencies. We find that the nematic state is an anomalous non-Fermi liquid, dominated by a linear resistivity at low temperatures that can transform into a Fermi liquid, depending on the composition $x$ and the impurity level. Near the nematic end point, we find an extended temperature regime with $T^{1.5}$ resistivity. The transverse magnetoresistance inside the nematic phase has as a $H^{1.55}$ dependence over a large magnetic field range and it displays an unusual peak at low temperatures inside the nematic phase. Our study reveals anomalous transport inside the nematic phase, driven by the subtle interplay between the changes in the electronic structure of a multi-band system and the unusual scattering processes affected by large magnetic fields and disorder
We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our hig
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial
We report the evolution of nematic fluctuations in FeSe$_{1-x}$S$_x$ single crystals as a function of Sulfur content $x$ across the nematic quantum critical point (QCP) $x_csim$ 0.17 via Raman scattering. The Raman spectra in the $B_{1g}$ nematic cha
We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. T
The superconducting transition of FeSe$_{1-x}$S$_x$ with three distinct sulphur concentrations $x$ was studied under hydrostatic pressure up to $sim$70 kbar via bulk AC susceptibility. The pressure dependence of the superconducting transition tempera